Computing equilibrium states of cholesteric liquid crystals in elliptical channels with deflation algorithms

We study the problem of a cholesteric liquid crystal confined to an elliptical channel. The system is geometrically frustrated because the cholesteric prefers to adopt a uniform rate of twist deformation, but the elliptical domain precludes this. The frustration is resolved by deformation of the lay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-06
Hauptverfasser: Emerson, David B, Farrell, Patrick E, Adler, James H, MacLachlan, Scott P, Atherton, Timothy J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Emerson, David B
Farrell, Patrick E
Adler, James H
MacLachlan, Scott P
Atherton, Timothy J
description We study the problem of a cholesteric liquid crystal confined to an elliptical channel. The system is geometrically frustrated because the cholesteric prefers to adopt a uniform rate of twist deformation, but the elliptical domain precludes this. The frustration is resolved by deformation of the layers or introduction of defects, leading to a particularly rich family of equilibrium configurations. To identify the solution set, we adapt and apply a new family of algorithms, known as deflation methods, that iteratively modify the free energy extremisation problem by removing previously known solutions. A second algorithm, deflated continuation, is used to track solution branches as a function of the aspect ratio of the ellipse and preferred pitch of the cholesteric.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075865687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075865687</sourcerecordid><originalsourceid>FETCH-proquest_journals_20758656873</originalsourceid><addsrcrecordid>eNqNjc0KgkAUhYcgSMp3uNBasLFR91L0AO1l0lGvXGd0fojevln0AK0OfOc7nB1LeFFcsvrK-YGlzs15nvOy4kIUCaPGLGvwqEdQW0DCl8WwgPPSKwdmgG4ypJxXFjsgjEoPnf3EnhygBkWEq8dOUjSl1iriN_oJejWQ9Gg0SBqNjWhxJ7Yf4k6lvzyy8_32bB7Zas0W4ks7m2B1rFqeV6IuRVlXxX_WF5VASyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075865687</pqid></control><display><type>article</type><title>Computing equilibrium states of cholesteric liquid crystals in elliptical channels with deflation algorithms</title><source>Free E- Journals</source><creator>Emerson, David B ; Farrell, Patrick E ; Adler, James H ; MacLachlan, Scott P ; Atherton, Timothy J</creator><creatorcontrib>Emerson, David B ; Farrell, Patrick E ; Adler, James H ; MacLachlan, Scott P ; Atherton, Timothy J</creatorcontrib><description>We study the problem of a cholesteric liquid crystal confined to an elliptical channel. The system is geometrically frustrated because the cholesteric prefers to adopt a uniform rate of twist deformation, but the elliptical domain precludes this. The frustration is resolved by deformation of the layers or introduction of defects, leading to a particularly rich family of equilibrium configurations. To identify the solution set, we adapt and apply a new family of algorithms, known as deflation methods, that iteratively modify the free energy extremisation problem by removing previously known solutions. A second algorithm, deflated continuation, is used to track solution branches as a function of the aspect ratio of the ellipse and preferred pitch of the cholesteric.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Aspect ratio ; Cholesteric liquid crystals ; Crystal defects ; Deflation ; Deformation ; Free energy</subject><ispartof>arXiv.org, 2017-06</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Emerson, David B</creatorcontrib><creatorcontrib>Farrell, Patrick E</creatorcontrib><creatorcontrib>Adler, James H</creatorcontrib><creatorcontrib>MacLachlan, Scott P</creatorcontrib><creatorcontrib>Atherton, Timothy J</creatorcontrib><title>Computing equilibrium states of cholesteric liquid crystals in elliptical channels with deflation algorithms</title><title>arXiv.org</title><description>We study the problem of a cholesteric liquid crystal confined to an elliptical channel. The system is geometrically frustrated because the cholesteric prefers to adopt a uniform rate of twist deformation, but the elliptical domain precludes this. The frustration is resolved by deformation of the layers or introduction of defects, leading to a particularly rich family of equilibrium configurations. To identify the solution set, we adapt and apply a new family of algorithms, known as deflation methods, that iteratively modify the free energy extremisation problem by removing previously known solutions. A second algorithm, deflated continuation, is used to track solution branches as a function of the aspect ratio of the ellipse and preferred pitch of the cholesteric.</description><subject>Algorithms</subject><subject>Aspect ratio</subject><subject>Cholesteric liquid crystals</subject><subject>Crystal defects</subject><subject>Deflation</subject><subject>Deformation</subject><subject>Free energy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjc0KgkAUhYcgSMp3uNBasLFR91L0AO1l0lGvXGd0fojevln0AK0OfOc7nB1LeFFcsvrK-YGlzs15nvOy4kIUCaPGLGvwqEdQW0DCl8WwgPPSKwdmgG4ypJxXFjsgjEoPnf3EnhygBkWEq8dOUjSl1iriN_oJejWQ9Gg0SBqNjWhxJ7Yf4k6lvzyy8_32bB7Zas0W4ks7m2B1rFqeV6IuRVlXxX_WF5VASyg</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>Emerson, David B</creator><creator>Farrell, Patrick E</creator><creator>Adler, James H</creator><creator>MacLachlan, Scott P</creator><creator>Atherton, Timothy J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170614</creationdate><title>Computing equilibrium states of cholesteric liquid crystals in elliptical channels with deflation algorithms</title><author>Emerson, David B ; Farrell, Patrick E ; Adler, James H ; MacLachlan, Scott P ; Atherton, Timothy J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20758656873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Aspect ratio</topic><topic>Cholesteric liquid crystals</topic><topic>Crystal defects</topic><topic>Deflation</topic><topic>Deformation</topic><topic>Free energy</topic><toplevel>online_resources</toplevel><creatorcontrib>Emerson, David B</creatorcontrib><creatorcontrib>Farrell, Patrick E</creatorcontrib><creatorcontrib>Adler, James H</creatorcontrib><creatorcontrib>MacLachlan, Scott P</creatorcontrib><creatorcontrib>Atherton, Timothy J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emerson, David B</au><au>Farrell, Patrick E</au><au>Adler, James H</au><au>MacLachlan, Scott P</au><au>Atherton, Timothy J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Computing equilibrium states of cholesteric liquid crystals in elliptical channels with deflation algorithms</atitle><jtitle>arXiv.org</jtitle><date>2017-06-14</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We study the problem of a cholesteric liquid crystal confined to an elliptical channel. The system is geometrically frustrated because the cholesteric prefers to adopt a uniform rate of twist deformation, but the elliptical domain precludes this. The frustration is resolved by deformation of the layers or introduction of defects, leading to a particularly rich family of equilibrium configurations. To identify the solution set, we adapt and apply a new family of algorithms, known as deflation methods, that iteratively modify the free energy extremisation problem by removing previously known solutions. A second algorithm, deflated continuation, is used to track solution branches as a function of the aspect ratio of the ellipse and preferred pitch of the cholesteric.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075865687
source Free E- Journals
subjects Algorithms
Aspect ratio
Cholesteric liquid crystals
Crystal defects
Deflation
Deformation
Free energy
title Computing equilibrium states of cholesteric liquid crystals in elliptical channels with deflation algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Computing%20equilibrium%20states%20of%20cholesteric%20liquid%20crystals%20in%20elliptical%20channels%20with%20deflation%20algorithms&rft.jtitle=arXiv.org&rft.au=Emerson,%20David%20B&rft.date=2017-06-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075865687%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075865687&rft_id=info:pmid/&rfr_iscdi=true