Problem involving nonlocal operator
The aim of this paper is to deal with the elliptic pdes involving a nonlinear integrodifferential operator, which are possibly degenerate and covers the case of fractional \(p\)-Laplacian operator. We prove the existence of a solution in the weak sense to the problem \begin{align*} \begin{split} -\m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ratan Kr Giri Choudhuri, D Soni, Amita |
description | The aim of this paper is to deal with the elliptic pdes involving a nonlinear integrodifferential operator, which are possibly degenerate and covers the case of fractional \(p\)-Laplacian operator. We prove the existence of a solution in the weak sense to the problem \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u\,\,\mbox{in}\,\,\Omega,\\ u & = 0\,\, \mbox{in}\,\, \mathbb{R}^N\setminus \Omega \end{split} \end{align*} if and only if a weak solution to \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u +f,\,\,\,f\in L^{p'}(\Omega),\\ u & = 0\,\, \mbox{on}\,\, \mathbb{R}^N\setminus \Omega \end{split} \end{align*} (\(p'\) being the conjugate of \(p\)), exists in a weak sense, for \(q\in(p, p_s^*)\) under certain condition on \(\lambda\), where \(-\mathscr{L}_\Phi \) is a general nonlocal integrodifferential operator of order \(s\in(0,1)\) and \(p_s^*\) is the fractional Sobolev conjugate of \(p\). We further prove the existence of a measure \(\mu^{*}\) corresponding to which a weak solution exists to the problem \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u +\mu^*\,\,\,\mbox{in}\,\, \Omega,\\ u & = 0\,\,\, \mbox{in}\,\,\mathbb{R}^N\setminus \Omega \end{split} \end{align*} depending upon the capacity. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075864684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075864684</sourcerecordid><originalsourceid>FETCH-proquest_journals_20758646843</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDijKT8pJzVXIzCvLzynLzEtXyMvPy8lPTsxRyC9ILUosyS_iYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzUwszEzMLE2PiVAEA09Yu2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075864684</pqid></control><display><type>article</type><title>Problem involving nonlocal operator</title><source>Free E- Journals</source><creator>Ratan Kr Giri ; Choudhuri, D ; Soni, Amita</creator><creatorcontrib>Ratan Kr Giri ; Choudhuri, D ; Soni, Amita</creatorcontrib><description><![CDATA[The aim of this paper is to deal with the elliptic pdes involving a nonlinear integrodifferential operator, which are possibly degenerate and covers the case of fractional \(p\)-Laplacian operator. We prove the existence of a solution in the weak sense to the problem \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u\,\,\mbox{in}\,\,\Omega,\\ u & = 0\,\, \mbox{in}\,\, \mathbb{R}^N\setminus \Omega \end{split} \end{align*} if and only if a weak solution to \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u +f,\,\,\,f\in L^{p'}(\Omega),\\ u & = 0\,\, \mbox{on}\,\, \mathbb{R}^N\setminus \Omega \end{split} \end{align*} (\(p'\) being the conjugate of \(p\)), exists in a weak sense, for \(q\in(p, p_s^*)\) under certain condition on \(\lambda\), where \(-\mathscr{L}_\Phi \) is a general nonlocal integrodifferential operator of order \(s\in(0,1)\) and \(p_s^*\) is the fractional Sobolev conjugate of \(p\). We further prove the existence of a measure \(\mu^{*}\) corresponding to which a weak solution exists to the problem \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u +\mu^*\,\,\,\mbox{in}\,\, \Omega,\\ u & = 0\,\,\, \mbox{in}\,\,\mathbb{R}^N\setminus \Omega \end{split} \end{align*} depending upon the capacity.]]></description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Conjugates</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ratan Kr Giri</creatorcontrib><creatorcontrib>Choudhuri, D</creatorcontrib><creatorcontrib>Soni, Amita</creatorcontrib><title>Problem involving nonlocal operator</title><title>arXiv.org</title><description><![CDATA[The aim of this paper is to deal with the elliptic pdes involving a nonlinear integrodifferential operator, which are possibly degenerate and covers the case of fractional \(p\)-Laplacian operator. We prove the existence of a solution in the weak sense to the problem \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u\,\,\mbox{in}\,\,\Omega,\\ u & = 0\,\, \mbox{in}\,\, \mathbb{R}^N\setminus \Omega \end{split} \end{align*} if and only if a weak solution to \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u +f,\,\,\,f\in L^{p'}(\Omega),\\ u & = 0\,\, \mbox{on}\,\, \mathbb{R}^N\setminus \Omega \end{split} \end{align*} (\(p'\) being the conjugate of \(p\)), exists in a weak sense, for \(q\in(p, p_s^*)\) under certain condition on \(\lambda\), where \(-\mathscr{L}_\Phi \) is a general nonlocal integrodifferential operator of order \(s\in(0,1)\) and \(p_s^*\) is the fractional Sobolev conjugate of \(p\). We further prove the existence of a measure \(\mu^{*}\) corresponding to which a weak solution exists to the problem \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u +\mu^*\,\,\,\mbox{in}\,\, \Omega,\\ u & = 0\,\,\, \mbox{in}\,\,\mathbb{R}^N\setminus \Omega \end{split} \end{align*} depending upon the capacity.]]></description><subject>Alignment</subject><subject>Conjugates</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDijKT8pJzVXIzCvLzynLzEtXyMvPy8lPTsxRyC9ILUosyS_iYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzUwszEzMLE2PiVAEA09Yu2w</recordid><startdate>20170712</startdate><enddate>20170712</enddate><creator>Ratan Kr Giri</creator><creator>Choudhuri, D</creator><creator>Soni, Amita</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170712</creationdate><title>Problem involving nonlocal operator</title><author>Ratan Kr Giri ; Choudhuri, D ; Soni, Amita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20758646843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alignment</topic><topic>Conjugates</topic><toplevel>online_resources</toplevel><creatorcontrib>Ratan Kr Giri</creatorcontrib><creatorcontrib>Choudhuri, D</creatorcontrib><creatorcontrib>Soni, Amita</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratan Kr Giri</au><au>Choudhuri, D</au><au>Soni, Amita</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Problem involving nonlocal operator</atitle><jtitle>arXiv.org</jtitle><date>2017-07-12</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract><![CDATA[The aim of this paper is to deal with the elliptic pdes involving a nonlinear integrodifferential operator, which are possibly degenerate and covers the case of fractional \(p\)-Laplacian operator. We prove the existence of a solution in the weak sense to the problem \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u\,\,\mbox{in}\,\,\Omega,\\ u & = 0\,\, \mbox{in}\,\, \mathbb{R}^N\setminus \Omega \end{split} \end{align*} if and only if a weak solution to \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u +f,\,\,\,f\in L^{p'}(\Omega),\\ u & = 0\,\, \mbox{on}\,\, \mathbb{R}^N\setminus \Omega \end{split} \end{align*} (\(p'\) being the conjugate of \(p\)), exists in a weak sense, for \(q\in(p, p_s^*)\) under certain condition on \(\lambda\), where \(-\mathscr{L}_\Phi \) is a general nonlocal integrodifferential operator of order \(s\in(0,1)\) and \(p_s^*\) is the fractional Sobolev conjugate of \(p\). We further prove the existence of a measure \(\mu^{*}\) corresponding to which a weak solution exists to the problem \begin{align*} \begin{split} -\mathscr{L}_\Phi u & = \lambda |u|^{q-2}u +\mu^*\,\,\,\mbox{in}\,\, \Omega,\\ u & = 0\,\,\, \mbox{in}\,\,\mathbb{R}^N\setminus \Omega \end{split} \end{align*} depending upon the capacity.]]></abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075864684 |
source | Free E- Journals |
subjects | Alignment Conjugates |
title | Problem involving nonlocal operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Problem%20involving%20nonlocal%20operator&rft.jtitle=arXiv.org&rft.au=Ratan%20Kr%20Giri&rft.date=2017-07-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075864684%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075864684&rft_id=info:pmid/&rfr_iscdi=true |