Comparing Aggregators for Relational Probabilistic Models
Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-07 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Seyed Mehran Kazemi Fatemi, Bahare Kim, Alexandra Peng, Zilun Moumita Roy Tora Zeng, Xing Dirks, Matthew Poole, David |
description | Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly, aggregation is not well understood. In this paper, we show that existing relational models (implicitly or explicitly) either use simple numerical aggregators that lose great amounts of information, or correspond to naive Bayes, logistic regression, or noisy-OR that suffer from overconfidence. We propose new simple aggregators and simple modifications of existing models that empirically outperform the existing ones. The intuition we provide on different (existing or new) models and their shortcomings plus our empirical findings promise to form the foundation for future representations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075791973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075791973</sourcerecordid><originalsourceid>FETCH-proquest_journals_20757919733</originalsourceid><addsrcrecordid>eNqNy7EKwjAUQNEgCBbtPwScC2nSGDtKUVwEEfeSahpSYl99L_1_HfwAp7ucu2CZVKos9pWUK5YTDUIIuTNSa5WxuoHXZDGMnh-8R-dtAiTeA_KbizYFGG3kV4TOdiEGSuHBL_B0kTZs2dtILv91zban4705FxPCe3aU2gFm_N7USmG0qcvaKPWf-gCqGjbV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075791973</pqid></control><display><type>article</type><title>Comparing Aggregators for Relational Probabilistic Models</title><source>Free E- Journals</source><creator>Seyed Mehran Kazemi ; Fatemi, Bahare ; Kim, Alexandra ; Peng, Zilun ; Moumita Roy Tora ; Zeng, Xing ; Dirks, Matthew ; Poole, David</creator><creatorcontrib>Seyed Mehran Kazemi ; Fatemi, Bahare ; Kim, Alexandra ; Peng, Zilun ; Moumita Roy Tora ; Zeng, Xing ; Dirks, Matthew ; Poole, David</creatorcontrib><description>Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly, aggregation is not well understood. In this paper, we show that existing relational models (implicitly or explicitly) either use simple numerical aggregators that lose great amounts of information, or correspond to naive Bayes, logistic regression, or noisy-OR that suffer from overconfidence. We propose new simple aggregators and simple modifications of existing models that empirically outperform the existing ones. The intuition we provide on different (existing or new) models and their shortcomings plus our empirical findings promise to form the foundation for future representations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agglomeration ; Bayesian analysis ; Probabilistic models ; Statistical analysis</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Seyed Mehran Kazemi</creatorcontrib><creatorcontrib>Fatemi, Bahare</creatorcontrib><creatorcontrib>Kim, Alexandra</creatorcontrib><creatorcontrib>Peng, Zilun</creatorcontrib><creatorcontrib>Moumita Roy Tora</creatorcontrib><creatorcontrib>Zeng, Xing</creatorcontrib><creatorcontrib>Dirks, Matthew</creatorcontrib><creatorcontrib>Poole, David</creatorcontrib><title>Comparing Aggregators for Relational Probabilistic Models</title><title>arXiv.org</title><description>Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly, aggregation is not well understood. In this paper, we show that existing relational models (implicitly or explicitly) either use simple numerical aggregators that lose great amounts of information, or correspond to naive Bayes, logistic regression, or noisy-OR that suffer from overconfidence. We propose new simple aggregators and simple modifications of existing models that empirically outperform the existing ones. The intuition we provide on different (existing or new) models and their shortcomings plus our empirical findings promise to form the foundation for future representations.</description><subject>Agglomeration</subject><subject>Bayesian analysis</subject><subject>Probabilistic models</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy7EKwjAUQNEgCBbtPwScC2nSGDtKUVwEEfeSahpSYl99L_1_HfwAp7ucu2CZVKos9pWUK5YTDUIIuTNSa5WxuoHXZDGMnh-8R-dtAiTeA_KbizYFGG3kV4TOdiEGSuHBL_B0kTZs2dtILv91zban4705FxPCe3aU2gFm_N7USmG0qcvaKPWf-gCqGjbV</recordid><startdate>20170725</startdate><enddate>20170725</enddate><creator>Seyed Mehran Kazemi</creator><creator>Fatemi, Bahare</creator><creator>Kim, Alexandra</creator><creator>Peng, Zilun</creator><creator>Moumita Roy Tora</creator><creator>Zeng, Xing</creator><creator>Dirks, Matthew</creator><creator>Poole, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170725</creationdate><title>Comparing Aggregators for Relational Probabilistic Models</title><author>Seyed Mehran Kazemi ; Fatemi, Bahare ; Kim, Alexandra ; Peng, Zilun ; Moumita Roy Tora ; Zeng, Xing ; Dirks, Matthew ; Poole, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20757919733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agglomeration</topic><topic>Bayesian analysis</topic><topic>Probabilistic models</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Seyed Mehran Kazemi</creatorcontrib><creatorcontrib>Fatemi, Bahare</creatorcontrib><creatorcontrib>Kim, Alexandra</creatorcontrib><creatorcontrib>Peng, Zilun</creatorcontrib><creatorcontrib>Moumita Roy Tora</creatorcontrib><creatorcontrib>Zeng, Xing</creatorcontrib><creatorcontrib>Dirks, Matthew</creatorcontrib><creatorcontrib>Poole, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seyed Mehran Kazemi</au><au>Fatemi, Bahare</au><au>Kim, Alexandra</au><au>Peng, Zilun</au><au>Moumita Roy Tora</au><au>Zeng, Xing</au><au>Dirks, Matthew</au><au>Poole, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comparing Aggregators for Relational Probabilistic Models</atitle><jtitle>arXiv.org</jtitle><date>2017-07-25</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly, aggregation is not well understood. In this paper, we show that existing relational models (implicitly or explicitly) either use simple numerical aggregators that lose great amounts of information, or correspond to naive Bayes, logistic regression, or noisy-OR that suffer from overconfidence. We propose new simple aggregators and simple modifications of existing models that empirically outperform the existing ones. The intuition we provide on different (existing or new) models and their shortcomings plus our empirical findings promise to form the foundation for future representations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075791973 |
source | Free E- Journals |
subjects | Agglomeration Bayesian analysis Probabilistic models Statistical analysis |
title | Comparing Aggregators for Relational Probabilistic Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comparing%20Aggregators%20for%20Relational%20Probabilistic%20Models&rft.jtitle=arXiv.org&rft.au=Seyed%20Mehran%20Kazemi&rft.date=2017-07-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075791973%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075791973&rft_id=info:pmid/&rfr_iscdi=true |