Comparing Aggregators for Relational Probabilistic Models

Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-07
Hauptverfasser: Seyed Mehran Kazemi, Fatemi, Bahare, Kim, Alexandra, Peng, Zilun, Moumita Roy Tora, Zeng, Xing, Dirks, Matthew, Poole, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Seyed Mehran Kazemi
Fatemi, Bahare
Kim, Alexandra
Peng, Zilun
Moumita Roy Tora
Zeng, Xing
Dirks, Matthew
Poole, David
description Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly, aggregation is not well understood. In this paper, we show that existing relational models (implicitly or explicitly) either use simple numerical aggregators that lose great amounts of information, or correspond to naive Bayes, logistic regression, or noisy-OR that suffer from overconfidence. We propose new simple aggregators and simple modifications of existing models that empirically outperform the existing ones. The intuition we provide on different (existing or new) models and their shortcomings plus our empirical findings promise to form the foundation for future representations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075791973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075791973</sourcerecordid><originalsourceid>FETCH-proquest_journals_20757919733</originalsourceid><addsrcrecordid>eNqNy7EKwjAUQNEgCBbtPwScC2nSGDtKUVwEEfeSahpSYl99L_1_HfwAp7ucu2CZVKos9pWUK5YTDUIIuTNSa5WxuoHXZDGMnh-8R-dtAiTeA_KbizYFGG3kV4TOdiEGSuHBL_B0kTZs2dtILv91zban4705FxPCe3aU2gFm_N7USmG0qcvaKPWf-gCqGjbV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075791973</pqid></control><display><type>article</type><title>Comparing Aggregators for Relational Probabilistic Models</title><source>Free E- Journals</source><creator>Seyed Mehran Kazemi ; Fatemi, Bahare ; Kim, Alexandra ; Peng, Zilun ; Moumita Roy Tora ; Zeng, Xing ; Dirks, Matthew ; Poole, David</creator><creatorcontrib>Seyed Mehran Kazemi ; Fatemi, Bahare ; Kim, Alexandra ; Peng, Zilun ; Moumita Roy Tora ; Zeng, Xing ; Dirks, Matthew ; Poole, David</creatorcontrib><description>Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly, aggregation is not well understood. In this paper, we show that existing relational models (implicitly or explicitly) either use simple numerical aggregators that lose great amounts of information, or correspond to naive Bayes, logistic regression, or noisy-OR that suffer from overconfidence. We propose new simple aggregators and simple modifications of existing models that empirically outperform the existing ones. The intuition we provide on different (existing or new) models and their shortcomings plus our empirical findings promise to form the foundation for future representations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agglomeration ; Bayesian analysis ; Probabilistic models ; Statistical analysis</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Seyed Mehran Kazemi</creatorcontrib><creatorcontrib>Fatemi, Bahare</creatorcontrib><creatorcontrib>Kim, Alexandra</creatorcontrib><creatorcontrib>Peng, Zilun</creatorcontrib><creatorcontrib>Moumita Roy Tora</creatorcontrib><creatorcontrib>Zeng, Xing</creatorcontrib><creatorcontrib>Dirks, Matthew</creatorcontrib><creatorcontrib>Poole, David</creatorcontrib><title>Comparing Aggregators for Relational Probabilistic Models</title><title>arXiv.org</title><description>Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly, aggregation is not well understood. In this paper, we show that existing relational models (implicitly or explicitly) either use simple numerical aggregators that lose great amounts of information, or correspond to naive Bayes, logistic regression, or noisy-OR that suffer from overconfidence. We propose new simple aggregators and simple modifications of existing models that empirically outperform the existing ones. The intuition we provide on different (existing or new) models and their shortcomings plus our empirical findings promise to form the foundation for future representations.</description><subject>Agglomeration</subject><subject>Bayesian analysis</subject><subject>Probabilistic models</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy7EKwjAUQNEgCBbtPwScC2nSGDtKUVwEEfeSahpSYl99L_1_HfwAp7ucu2CZVKos9pWUK5YTDUIIuTNSa5WxuoHXZDGMnh-8R-dtAiTeA_KbizYFGG3kV4TOdiEGSuHBL_B0kTZs2dtILv91zban4705FxPCe3aU2gFm_N7USmG0qcvaKPWf-gCqGjbV</recordid><startdate>20170725</startdate><enddate>20170725</enddate><creator>Seyed Mehran Kazemi</creator><creator>Fatemi, Bahare</creator><creator>Kim, Alexandra</creator><creator>Peng, Zilun</creator><creator>Moumita Roy Tora</creator><creator>Zeng, Xing</creator><creator>Dirks, Matthew</creator><creator>Poole, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170725</creationdate><title>Comparing Aggregators for Relational Probabilistic Models</title><author>Seyed Mehran Kazemi ; Fatemi, Bahare ; Kim, Alexandra ; Peng, Zilun ; Moumita Roy Tora ; Zeng, Xing ; Dirks, Matthew ; Poole, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20757919733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agglomeration</topic><topic>Bayesian analysis</topic><topic>Probabilistic models</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Seyed Mehran Kazemi</creatorcontrib><creatorcontrib>Fatemi, Bahare</creatorcontrib><creatorcontrib>Kim, Alexandra</creatorcontrib><creatorcontrib>Peng, Zilun</creatorcontrib><creatorcontrib>Moumita Roy Tora</creatorcontrib><creatorcontrib>Zeng, Xing</creatorcontrib><creatorcontrib>Dirks, Matthew</creatorcontrib><creatorcontrib>Poole, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seyed Mehran Kazemi</au><au>Fatemi, Bahare</au><au>Kim, Alexandra</au><au>Peng, Zilun</au><au>Moumita Roy Tora</au><au>Zeng, Xing</au><au>Dirks, Matthew</au><au>Poole, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comparing Aggregators for Relational Probabilistic Models</atitle><jtitle>arXiv.org</jtitle><date>2017-07-25</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Relational probabilistic models have the challenge of aggregation, where one variable depends on a population of other variables. Consider the problem of predicting gender from movie ratings; this is challenging because the number of movies per user and users per movie can vary greatly. Surprisingly, aggregation is not well understood. In this paper, we show that existing relational models (implicitly or explicitly) either use simple numerical aggregators that lose great amounts of information, or correspond to naive Bayes, logistic regression, or noisy-OR that suffer from overconfidence. We propose new simple aggregators and simple modifications of existing models that empirically outperform the existing ones. The intuition we provide on different (existing or new) models and their shortcomings plus our empirical findings promise to form the foundation for future representations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075791973
source Free E- Journals
subjects Agglomeration
Bayesian analysis
Probabilistic models
Statistical analysis
title Comparing Aggregators for Relational Probabilistic Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comparing%20Aggregators%20for%20Relational%20Probabilistic%20Models&rft.jtitle=arXiv.org&rft.au=Seyed%20Mehran%20Kazemi&rft.date=2017-07-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075791973%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075791973&rft_id=info:pmid/&rfr_iscdi=true