Eigenvalue Dynamics of a PT-symmetric Sturm-Liouville Operator. Criteria of the Similarity to a Self-adjoint or Normal Operator
The goal of the paper is to investigate the dynamics of the eigenvalues of the Sturm-Liouville operator with summable PT-symmetric potential on the finite interval. It turns out that the case of a complex Airy operator presents an exactly solvable model which allows us to trace the dynamics of the m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shkalikov, A A Tumanov, S N |
description | The goal of the paper is to investigate the dynamics of the eigenvalues of the Sturm-Liouville operator with summable PT-symmetric potential on the finite interval. It turns out that the case of a complex Airy operator presents an exactly solvable model which allows us to trace the dynamics of the movement of the eigenvalues in all details and to find explicitly the critical parameter values, in particular, to specify precisely the number \(\varepsilon_1\) such that for \(0 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075739151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075739151</sourcerecordid><originalsourceid>FETCH-proquest_journals_20757391513</originalsourceid><addsrcrecordid>eNqNjEFLw0AQhRdBsGj_w4DnlWTXGD3XigdRIb2XoU7aCbuZOrtbyMm_bgTx7OnBe9_7zszCeV_b-1vnLswypaGqKnfXuqbxC_O15j2NJwyF4HEaMfIugfSA8L6xaYqRsvIOulw02heWcuIQCN6OpJhFb2ClnEkZf075QNBx5IBzOUGWWdNR6C1-DMJjBlF4FY0Y_gRX5rzHkGj5m5fm-mm9WT3bo8pnoZS3gxQd52nrqrZp_UPd1P5_1Dd7CU_W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075739151</pqid></control><display><type>article</type><title>Eigenvalue Dynamics of a PT-symmetric Sturm-Liouville Operator. Criteria of the Similarity to a Self-adjoint or Normal Operator</title><source>Free E- Journals</source><creator>Shkalikov, A A ; Tumanov, S N</creator><creatorcontrib>Shkalikov, A A ; Tumanov, S N</creatorcontrib><description>The goal of the paper is to investigate the dynamics of the eigenvalues of the Sturm-Liouville operator with summable PT-symmetric potential on the finite interval. It turns out that the case of a complex Airy operator presents an exactly solvable model which allows us to trace the dynamics of the movement of the eigenvalues in all details and to find explicitly the critical parameter values, in particular, to specify precisely the number \(\varepsilon_1\) such that for \(0<\varepsilon<\varepsilon_1\) the operator has a real spectrum and is similar to a self-adjoint operator.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Economic models ; Eigenvalues</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shkalikov, A A</creatorcontrib><creatorcontrib>Tumanov, S N</creatorcontrib><title>Eigenvalue Dynamics of a PT-symmetric Sturm-Liouville Operator. Criteria of the Similarity to a Self-adjoint or Normal Operator</title><title>arXiv.org</title><description>The goal of the paper is to investigate the dynamics of the eigenvalues of the Sturm-Liouville operator with summable PT-symmetric potential on the finite interval. It turns out that the case of a complex Airy operator presents an exactly solvable model which allows us to trace the dynamics of the movement of the eigenvalues in all details and to find explicitly the critical parameter values, in particular, to specify precisely the number \(\varepsilon_1\) such that for \(0<\varepsilon<\varepsilon_1\) the operator has a real spectrum and is similar to a self-adjoint operator.</description><subject>Economic models</subject><subject>Eigenvalues</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEFLw0AQhRdBsGj_w4DnlWTXGD3XigdRIb2XoU7aCbuZOrtbyMm_bgTx7OnBe9_7zszCeV_b-1vnLswypaGqKnfXuqbxC_O15j2NJwyF4HEaMfIugfSA8L6xaYqRsvIOulw02heWcuIQCN6OpJhFb2ClnEkZf075QNBx5IBzOUGWWdNR6C1-DMJjBlF4FY0Y_gRX5rzHkGj5m5fm-mm9WT3bo8pnoZS3gxQd52nrqrZp_UPd1P5_1Dd7CU_W</recordid><startdate>20170725</startdate><enddate>20170725</enddate><creator>Shkalikov, A A</creator><creator>Tumanov, S N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170725</creationdate><title>Eigenvalue Dynamics of a PT-symmetric Sturm-Liouville Operator. Criteria of the Similarity to a Self-adjoint or Normal Operator</title><author>Shkalikov, A A ; Tumanov, S N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20757391513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Economic models</topic><topic>Eigenvalues</topic><toplevel>online_resources</toplevel><creatorcontrib>Shkalikov, A A</creatorcontrib><creatorcontrib>Tumanov, S N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shkalikov, A A</au><au>Tumanov, S N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Eigenvalue Dynamics of a PT-symmetric Sturm-Liouville Operator. Criteria of the Similarity to a Self-adjoint or Normal Operator</atitle><jtitle>arXiv.org</jtitle><date>2017-07-25</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>The goal of the paper is to investigate the dynamics of the eigenvalues of the Sturm-Liouville operator with summable PT-symmetric potential on the finite interval. It turns out that the case of a complex Airy operator presents an exactly solvable model which allows us to trace the dynamics of the movement of the eigenvalues in all details and to find explicitly the critical parameter values, in particular, to specify precisely the number \(\varepsilon_1\) such that for \(0<\varepsilon<\varepsilon_1\) the operator has a real spectrum and is similar to a self-adjoint operator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075739151 |
source | Free E- Journals |
subjects | Economic models Eigenvalues |
title | Eigenvalue Dynamics of a PT-symmetric Sturm-Liouville Operator. Criteria of the Similarity to a Self-adjoint or Normal Operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Eigenvalue%20Dynamics%20of%20a%20PT-symmetric%20Sturm-Liouville%20Operator.%20Criteria%20of%20the%20Similarity%20to%20a%20Self-adjoint%20or%20Normal%20Operator&rft.jtitle=arXiv.org&rft.au=Shkalikov,%20A%20A&rft.date=2017-07-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075739151%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075739151&rft_id=info:pmid/&rfr_iscdi=true |