Evaluating Word Embeddings for Sentence Boundary Detection in Speech Transcripts

This paper is motivated by the automation of neuropsychological tests involving discourse analysis in the retellings of narratives by patients with potential cognitive impairment. In this scenario the task of sentence boundary detection in speech transcripts is important as discourse analysis involv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-08
Hauptverfasser: Treviso, Marcos V, Shulby, Christopher D, Aluisio, Sandra M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Treviso, Marcos V
Shulby, Christopher D
Aluisio, Sandra M
description This paper is motivated by the automation of neuropsychological tests involving discourse analysis in the retellings of narratives by patients with potential cognitive impairment. In this scenario the task of sentence boundary detection in speech transcripts is important as discourse analysis involves the application of Natural Language Processing tools, such as taggers and parsers, which depend on the sentence as a processing unit. Our aim in this paper is to verify which embedding induction method works best for the sentence boundary detection task, specifically whether it be those which were proposed to capture semantic, syntactic or morphological similarities.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075723887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075723887</sourcerecordid><originalsourceid>FETCH-proquest_journals_20757238873</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6UBNrulYrLoUWXJaYvGpKTWo-gre3Cw_gahhmZiShjG2yckvpgqTe93me0x2nRcEScqneYogiaHOHq3UKqucNlZrUQ2cd1GgCGomwt9Eo4T5wxIAyaGtAG6hHRPmAxgnjpdNj8Csy78TgMf1xSdanqjmcs9HZV0Qf2t5GZ6bU0pwXnLKy5Oy_6wtp8D8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075723887</pqid></control><display><type>article</type><title>Evaluating Word Embeddings for Sentence Boundary Detection in Speech Transcripts</title><source>Free E- Journals</source><creator>Treviso, Marcos V ; Shulby, Christopher D ; Aluisio, Sandra M</creator><creatorcontrib>Treviso, Marcos V ; Shulby, Christopher D ; Aluisio, Sandra M</creatorcontrib><description>This paper is motivated by the automation of neuropsychological tests involving discourse analysis in the retellings of narratives by patients with potential cognitive impairment. In this scenario the task of sentence boundary detection in speech transcripts is important as discourse analysis involves the application of Natural Language Processing tools, such as taggers and parsers, which depend on the sentence as a processing unit. Our aim in this paper is to verify which embedding induction method works best for the sentence boundary detection task, specifically whether it be those which were proposed to capture semantic, syntactic or morphological similarities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Discourse analysis ; Natural language processing ; Parsers</subject><ispartof>arXiv.org, 2017-08</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Treviso, Marcos V</creatorcontrib><creatorcontrib>Shulby, Christopher D</creatorcontrib><creatorcontrib>Aluisio, Sandra M</creatorcontrib><title>Evaluating Word Embeddings for Sentence Boundary Detection in Speech Transcripts</title><title>arXiv.org</title><description>This paper is motivated by the automation of neuropsychological tests involving discourse analysis in the retellings of narratives by patients with potential cognitive impairment. In this scenario the task of sentence boundary detection in speech transcripts is important as discourse analysis involves the application of Natural Language Processing tools, such as taggers and parsers, which depend on the sentence as a processing unit. Our aim in this paper is to verify which embedding induction method works best for the sentence boundary detection task, specifically whether it be those which were proposed to capture semantic, syntactic or morphological similarities.</description><subject>Discourse analysis</subject><subject>Natural language processing</subject><subject>Parsers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6UBNrulYrLoUWXJaYvGpKTWo-gre3Cw_gahhmZiShjG2yckvpgqTe93me0x2nRcEScqneYogiaHOHq3UKqucNlZrUQ2cd1GgCGomwt9Eo4T5wxIAyaGtAG6hHRPmAxgnjpdNj8Csy78TgMf1xSdanqjmcs9HZV0Qf2t5GZ6bU0pwXnLKy5Oy_6wtp8D8g</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Treviso, Marcos V</creator><creator>Shulby, Christopher D</creator><creator>Aluisio, Sandra M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170815</creationdate><title>Evaluating Word Embeddings for Sentence Boundary Detection in Speech Transcripts</title><author>Treviso, Marcos V ; Shulby, Christopher D ; Aluisio, Sandra M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20757238873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Discourse analysis</topic><topic>Natural language processing</topic><topic>Parsers</topic><toplevel>online_resources</toplevel><creatorcontrib>Treviso, Marcos V</creatorcontrib><creatorcontrib>Shulby, Christopher D</creatorcontrib><creatorcontrib>Aluisio, Sandra M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Treviso, Marcos V</au><au>Shulby, Christopher D</au><au>Aluisio, Sandra M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Evaluating Word Embeddings for Sentence Boundary Detection in Speech Transcripts</atitle><jtitle>arXiv.org</jtitle><date>2017-08-15</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>This paper is motivated by the automation of neuropsychological tests involving discourse analysis in the retellings of narratives by patients with potential cognitive impairment. In this scenario the task of sentence boundary detection in speech transcripts is important as discourse analysis involves the application of Natural Language Processing tools, such as taggers and parsers, which depend on the sentence as a processing unit. Our aim in this paper is to verify which embedding induction method works best for the sentence boundary detection task, specifically whether it be those which were proposed to capture semantic, syntactic or morphological similarities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075723887
source Free E- Journals
subjects Discourse analysis
Natural language processing
Parsers
title Evaluating Word Embeddings for Sentence Boundary Detection in Speech Transcripts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Evaluating%20Word%20Embeddings%20for%20Sentence%20Boundary%20Detection%20in%20Speech%20Transcripts&rft.jtitle=arXiv.org&rft.au=Treviso,%20Marcos%20V&rft.date=2017-08-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075723887%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075723887&rft_id=info:pmid/&rfr_iscdi=true