Composition of Gray Isometries

In classical coding theory, Gray isometries are usually defined as mappings between finite Frobenius rings, which include the ring \(Z_m\) of integers modulo \(m\), and the finite fields. In this paper, we derive an isometric mapping from \(Z_8\) to \(Z_4^2\) from the composition of the Gray isometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-06
Hauptverfasser: Sierra Marie M Lauresta, Sison, Virgilio P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sierra Marie M Lauresta
Sison, Virgilio P
description In classical coding theory, Gray isometries are usually defined as mappings between finite Frobenius rings, which include the ring \(Z_m\) of integers modulo \(m\), and the finite fields. In this paper, we derive an isometric mapping from \(Z_8\) to \(Z_4^2\) from the composition of the Gray isometries on \(Z_8\) and on \(Z_4^2\). The image under this composition of a \(Z_8\)-linear block code of length \(n\) with homogeneous distance \(d\) is a (not necessarily linear) quaternary block code of length \(2n\) with Lee distance \(d\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075722683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075722683</sourcerecordid><originalsourceid>FETCH-proquest_journals_20757226833</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQc87PLcgvzizJzM9TyE9TcC9KrFTwLM7PTS0pykwt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc1NzIyMzC2Nj4lQBAJuNLHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075722683</pqid></control><display><type>article</type><title>Composition of Gray Isometries</title><source>Freely Accessible Journals at publisher websites</source><creator>Sierra Marie M Lauresta ; Sison, Virgilio P</creator><creatorcontrib>Sierra Marie M Lauresta ; Sison, Virgilio P</creatorcontrib><description>In classical coding theory, Gray isometries are usually defined as mappings between finite Frobenius rings, which include the ring \(Z_m\) of integers modulo \(m\), and the finite fields. In this paper, we derive an isometric mapping from \(Z_8\) to \(Z_4^2\) from the composition of the Gray isometries on \(Z_8\) and on \(Z_4^2\). The image under this composition of a \(Z_8\)-linear block code of length \(n\) with homogeneous distance \(d\) is a (not necessarily linear) quaternary block code of length \(2n\) with Lee distance \(d\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Block codes ; Composition ; Fields (mathematics) ; Integers ; Mapping</subject><ispartof>arXiv.org, 2017-06</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sierra Marie M Lauresta</creatorcontrib><creatorcontrib>Sison, Virgilio P</creatorcontrib><title>Composition of Gray Isometries</title><title>arXiv.org</title><description>In classical coding theory, Gray isometries are usually defined as mappings between finite Frobenius rings, which include the ring \(Z_m\) of integers modulo \(m\), and the finite fields. In this paper, we derive an isometric mapping from \(Z_8\) to \(Z_4^2\) from the composition of the Gray isometries on \(Z_8\) and on \(Z_4^2\). The image under this composition of a \(Z_8\)-linear block code of length \(n\) with homogeneous distance \(d\) is a (not necessarily linear) quaternary block code of length \(2n\) with Lee distance \(d\).</description><subject>Block codes</subject><subject>Composition</subject><subject>Fields (mathematics)</subject><subject>Integers</subject><subject>Mapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQc87PLcgvzizJzM9TyE9TcC9KrFTwLM7PTS0pykwt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc1NzIyMzC2Nj4lQBAJuNLHc</recordid><startdate>20170629</startdate><enddate>20170629</enddate><creator>Sierra Marie M Lauresta</creator><creator>Sison, Virgilio P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170629</creationdate><title>Composition of Gray Isometries</title><author>Sierra Marie M Lauresta ; Sison, Virgilio P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20757226833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Block codes</topic><topic>Composition</topic><topic>Fields (mathematics)</topic><topic>Integers</topic><topic>Mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Sierra Marie M Lauresta</creatorcontrib><creatorcontrib>Sison, Virgilio P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sierra Marie M Lauresta</au><au>Sison, Virgilio P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Composition of Gray Isometries</atitle><jtitle>arXiv.org</jtitle><date>2017-06-29</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In classical coding theory, Gray isometries are usually defined as mappings between finite Frobenius rings, which include the ring \(Z_m\) of integers modulo \(m\), and the finite fields. In this paper, we derive an isometric mapping from \(Z_8\) to \(Z_4^2\) from the composition of the Gray isometries on \(Z_8\) and on \(Z_4^2\). The image under this composition of a \(Z_8\)-linear block code of length \(n\) with homogeneous distance \(d\) is a (not necessarily linear) quaternary block code of length \(2n\) with Lee distance \(d\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075722683
source Freely Accessible Journals at publisher websites
subjects Block codes
Composition
Fields (mathematics)
Integers
Mapping
title Composition of Gray Isometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Composition%20of%20Gray%20Isometries&rft.jtitle=arXiv.org&rft.au=Sierra%20Marie%20M%20Lauresta&rft.date=2017-06-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075722683%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075722683&rft_id=info:pmid/&rfr_iscdi=true