Improved Deterministic Distributed Construction of Spanners

Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-08
Hauptverfasser: Grossman, Ofer, Parter, Merav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Grossman, Ofer
Parter, Merav
description Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic distributed spanner constructions suffers from large messages. The only exception is the work of Derbel et al. '10, which computes an optimal-sized \((2k-1)\)-spanner but uses \(O(n^{1-1/k})\) rounds. In this paper, we significantly improve this bound. We present a deterministic distributed algorithm that given an unweighted \(n\)-vertex graph \(G = (V, E)\) and a parameter \(k > 2\), constructs a \((2k-1)\)-spanner with \(O(k \cdot n^{1+1/k})\) edges within \(O(2^{k} \cdot n^{1/2 - 1/k})\) rounds for every even \(k\). For odd \(k\), the number of rounds is \(O(2^{k} \cdot n^{1/2 - 1/(2k)})\). For the weighted case, we provide the first deterministic construction of a \(3\)-spanner with \(O(n^{3/2})\) edges that uses \(O(\log n)\)-size messages and \(\widetilde{O}(1)\) rounds. If the nodes have IDs in \([1, \Theta(n)]\), then the algorithm works in only \(2\) rounds!
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075690326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075690326</sourcerecordid><originalsourceid>FETCH-proquest_journals_20756903263</originalsourceid><addsrcrecordid>eNqNjMEKwjAQBYMgWLT_EPBciBuTKh5bRc96L23dQopNajbx-83BD_A0PGZ4C5aBlLvisAdYsZxoFEKALkEpmbHTbZq9--CT1xjQT8YaCqbndYI3XQzJVM6mEftgnOVu4Pe5tRY9bdhyaF-E-Y9rtr2cH9W1SI_viBSa0UVvk2pAlEofhQQt_6u-XrY39w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075690326</pqid></control><display><type>article</type><title>Improved Deterministic Distributed Construction of Spanners</title><source>Free E- Journals</source><creator>Grossman, Ofer ; Parter, Merav</creator><creatorcontrib>Grossman, Ofer ; Parter, Merav</creatorcontrib><description>Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic distributed spanner constructions suffers from large messages. The only exception is the work of Derbel et al. '10, which computes an optimal-sized \((2k-1)\)-spanner but uses \(O(n^{1-1/k})\) rounds. In this paper, we significantly improve this bound. We present a deterministic distributed algorithm that given an unweighted \(n\)-vertex graph \(G = (V, E)\) and a parameter \(k &gt; 2\), constructs a \((2k-1)\)-spanner with \(O(k \cdot n^{1+1/k})\) edges within \(O(2^{k} \cdot n^{1/2 - 1/k})\) rounds for every even \(k\). For odd \(k\), the number of rounds is \(O(2^{k} \cdot n^{1/2 - 1/(2k)})\). For the weighted case, we provide the first deterministic construction of a \(3\)-spanner with \(O(n^{3/2})\) edges that uses \(O(\log n)\)-size messages and \(\widetilde{O}(1)\) rounds. If the nodes have IDs in \([1, \Theta(n)]\), then the algorithm works in only \(2\) rounds!</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer networks ; Message passing</subject><ispartof>arXiv.org, 2017-08</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Grossman, Ofer</creatorcontrib><creatorcontrib>Parter, Merav</creatorcontrib><title>Improved Deterministic Distributed Construction of Spanners</title><title>arXiv.org</title><description>Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic distributed spanner constructions suffers from large messages. The only exception is the work of Derbel et al. '10, which computes an optimal-sized \((2k-1)\)-spanner but uses \(O(n^{1-1/k})\) rounds. In this paper, we significantly improve this bound. We present a deterministic distributed algorithm that given an unweighted \(n\)-vertex graph \(G = (V, E)\) and a parameter \(k &gt; 2\), constructs a \((2k-1)\)-spanner with \(O(k \cdot n^{1+1/k})\) edges within \(O(2^{k} \cdot n^{1/2 - 1/k})\) rounds for every even \(k\). For odd \(k\), the number of rounds is \(O(2^{k} \cdot n^{1/2 - 1/(2k)})\). For the weighted case, we provide the first deterministic construction of a \(3\)-spanner with \(O(n^{3/2})\) edges that uses \(O(\log n)\)-size messages and \(\widetilde{O}(1)\) rounds. If the nodes have IDs in \([1, \Theta(n)]\), then the algorithm works in only \(2\) rounds!</description><subject>Algorithms</subject><subject>Computer networks</subject><subject>Message passing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKwjAQBYMgWLT_EPBciBuTKh5bRc96L23dQopNajbx-83BD_A0PGZ4C5aBlLvisAdYsZxoFEKALkEpmbHTbZq9--CT1xjQT8YaCqbndYI3XQzJVM6mEftgnOVu4Pe5tRY9bdhyaF-E-Y9rtr2cH9W1SI_viBSa0UVvk2pAlEofhQQt_6u-XrY39w</recordid><startdate>20170812</startdate><enddate>20170812</enddate><creator>Grossman, Ofer</creator><creator>Parter, Merav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170812</creationdate><title>Improved Deterministic Distributed Construction of Spanners</title><author>Grossman, Ofer ; Parter, Merav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20756903263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computer networks</topic><topic>Message passing</topic><toplevel>online_resources</toplevel><creatorcontrib>Grossman, Ofer</creatorcontrib><creatorcontrib>Parter, Merav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grossman, Ofer</au><au>Parter, Merav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved Deterministic Distributed Construction of Spanners</atitle><jtitle>arXiv.org</jtitle><date>2017-08-12</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic distributed spanner constructions suffers from large messages. The only exception is the work of Derbel et al. '10, which computes an optimal-sized \((2k-1)\)-spanner but uses \(O(n^{1-1/k})\) rounds. In this paper, we significantly improve this bound. We present a deterministic distributed algorithm that given an unweighted \(n\)-vertex graph \(G = (V, E)\) and a parameter \(k &gt; 2\), constructs a \((2k-1)\)-spanner with \(O(k \cdot n^{1+1/k})\) edges within \(O(2^{k} \cdot n^{1/2 - 1/k})\) rounds for every even \(k\). For odd \(k\), the number of rounds is \(O(2^{k} \cdot n^{1/2 - 1/(2k)})\). For the weighted case, we provide the first deterministic construction of a \(3\)-spanner with \(O(n^{3/2})\) edges that uses \(O(\log n)\)-size messages and \(\widetilde{O}(1)\) rounds. If the nodes have IDs in \([1, \Theta(n)]\), then the algorithm works in only \(2\) rounds!</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075690326
source Free E- Journals
subjects Algorithms
Computer networks
Message passing
title Improved Deterministic Distributed Construction of Spanners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20Deterministic%20Distributed%20Construction%20of%20Spanners&rft.jtitle=arXiv.org&rft.au=Grossman,%20Ofer&rft.date=2017-08-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075690326%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075690326&rft_id=info:pmid/&rfr_iscdi=true