Improved Deterministic Distributed Construction of Spanners
Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic dis...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Grossman, Ofer Parter, Merav |
description | Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic distributed spanner constructions suffers from large messages. The only exception is the work of Derbel et al. '10, which computes an optimal-sized \((2k-1)\)-spanner but uses \(O(n^{1-1/k})\) rounds. In this paper, we significantly improve this bound. We present a deterministic distributed algorithm that given an unweighted \(n\)-vertex graph \(G = (V, E)\) and a parameter \(k > 2\), constructs a \((2k-1)\)-spanner with \(O(k \cdot n^{1+1/k})\) edges within \(O(2^{k} \cdot n^{1/2 - 1/k})\) rounds for every even \(k\). For odd \(k\), the number of rounds is \(O(2^{k} \cdot n^{1/2 - 1/(2k)})\). For the weighted case, we provide the first deterministic construction of a \(3\)-spanner with \(O(n^{3/2})\) edges that uses \(O(\log n)\)-size messages and \(\widetilde{O}(1)\) rounds. If the nodes have IDs in \([1, \Theta(n)]\), then the algorithm works in only \(2\) rounds! |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075690326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075690326</sourcerecordid><originalsourceid>FETCH-proquest_journals_20756903263</originalsourceid><addsrcrecordid>eNqNjMEKwjAQBYMgWLT_EPBciBuTKh5bRc96L23dQopNajbx-83BD_A0PGZ4C5aBlLvisAdYsZxoFEKALkEpmbHTbZq9--CT1xjQT8YaCqbndYI3XQzJVM6mEftgnOVu4Pe5tRY9bdhyaF-E-Y9rtr2cH9W1SI_viBSa0UVvk2pAlEofhQQt_6u-XrY39w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075690326</pqid></control><display><type>article</type><title>Improved Deterministic Distributed Construction of Spanners</title><source>Free E- Journals</source><creator>Grossman, Ofer ; Parter, Merav</creator><creatorcontrib>Grossman, Ofer ; Parter, Merav</creatorcontrib><description>Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic distributed spanner constructions suffers from large messages. The only exception is the work of Derbel et al. '10, which computes an optimal-sized \((2k-1)\)-spanner but uses \(O(n^{1-1/k})\) rounds. In this paper, we significantly improve this bound. We present a deterministic distributed algorithm that given an unweighted \(n\)-vertex graph \(G = (V, E)\) and a parameter \(k > 2\), constructs a \((2k-1)\)-spanner with \(O(k \cdot n^{1+1/k})\) edges within \(O(2^{k} \cdot n^{1/2 - 1/k})\) rounds for every even \(k\). For odd \(k\), the number of rounds is \(O(2^{k} \cdot n^{1/2 - 1/(2k)})\). For the weighted case, we provide the first deterministic construction of a \(3\)-spanner with \(O(n^{3/2})\) edges that uses \(O(\log n)\)-size messages and \(\widetilde{O}(1)\) rounds. If the nodes have IDs in \([1, \Theta(n)]\), then the algorithm works in only \(2\) rounds!</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer networks ; Message passing</subject><ispartof>arXiv.org, 2017-08</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Grossman, Ofer</creatorcontrib><creatorcontrib>Parter, Merav</creatorcontrib><title>Improved Deterministic Distributed Construction of Spanners</title><title>arXiv.org</title><description>Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic distributed spanner constructions suffers from large messages. The only exception is the work of Derbel et al. '10, which computes an optimal-sized \((2k-1)\)-spanner but uses \(O(n^{1-1/k})\) rounds. In this paper, we significantly improve this bound. We present a deterministic distributed algorithm that given an unweighted \(n\)-vertex graph \(G = (V, E)\) and a parameter \(k > 2\), constructs a \((2k-1)\)-spanner with \(O(k \cdot n^{1+1/k})\) edges within \(O(2^{k} \cdot n^{1/2 - 1/k})\) rounds for every even \(k\). For odd \(k\), the number of rounds is \(O(2^{k} \cdot n^{1/2 - 1/(2k)})\). For the weighted case, we provide the first deterministic construction of a \(3\)-spanner with \(O(n^{3/2})\) edges that uses \(O(\log n)\)-size messages and \(\widetilde{O}(1)\) rounds. If the nodes have IDs in \([1, \Theta(n)]\), then the algorithm works in only \(2\) rounds!</description><subject>Algorithms</subject><subject>Computer networks</subject><subject>Message passing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKwjAQBYMgWLT_EPBciBuTKh5bRc96L23dQopNajbx-83BD_A0PGZ4C5aBlLvisAdYsZxoFEKALkEpmbHTbZq9--CT1xjQT8YaCqbndYI3XQzJVM6mEftgnOVu4Pe5tRY9bdhyaF-E-Y9rtr2cH9W1SI_viBSa0UVvk2pAlEofhQQt_6u-XrY39w</recordid><startdate>20170812</startdate><enddate>20170812</enddate><creator>Grossman, Ofer</creator><creator>Parter, Merav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170812</creationdate><title>Improved Deterministic Distributed Construction of Spanners</title><author>Grossman, Ofer ; Parter, Merav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20756903263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computer networks</topic><topic>Message passing</topic><toplevel>online_resources</toplevel><creatorcontrib>Grossman, Ofer</creatorcontrib><creatorcontrib>Parter, Merav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grossman, Ofer</au><au>Parter, Merav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved Deterministic Distributed Construction of Spanners</atitle><jtitle>arXiv.org</jtitle><date>2017-08-12</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Graph spanners are fundamental graph structures with a wide range of applications in distributed networks. We consider a standard synchronous message passing model where in each round \(O(\log n)\) bits can be transmitted over every edge (the CONGEST model). The state of the art of deterministic distributed spanner constructions suffers from large messages. The only exception is the work of Derbel et al. '10, which computes an optimal-sized \((2k-1)\)-spanner but uses \(O(n^{1-1/k})\) rounds. In this paper, we significantly improve this bound. We present a deterministic distributed algorithm that given an unweighted \(n\)-vertex graph \(G = (V, E)\) and a parameter \(k > 2\), constructs a \((2k-1)\)-spanner with \(O(k \cdot n^{1+1/k})\) edges within \(O(2^{k} \cdot n^{1/2 - 1/k})\) rounds for every even \(k\). For odd \(k\), the number of rounds is \(O(2^{k} \cdot n^{1/2 - 1/(2k)})\). For the weighted case, we provide the first deterministic construction of a \(3\)-spanner with \(O(n^{3/2})\) edges that uses \(O(\log n)\)-size messages and \(\widetilde{O}(1)\) rounds. If the nodes have IDs in \([1, \Theta(n)]\), then the algorithm works in only \(2\) rounds!</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075690326 |
source | Free E- Journals |
subjects | Algorithms Computer networks Message passing |
title | Improved Deterministic Distributed Construction of Spanners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20Deterministic%20Distributed%20Construction%20of%20Spanners&rft.jtitle=arXiv.org&rft.au=Grossman,%20Ofer&rft.date=2017-08-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075690326%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075690326&rft_id=info:pmid/&rfr_iscdi=true |