Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots

This paper presents a new teleoperated spherical tensegrity robot capable of performing locomotion on steep inclined surfaces. With a novel control scheme centered around the simultaneous actuation of multiple cables, the robot demonstrates robust climbing on inclined surfaces in hardware experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-08
Hauptverfasser: Lee-Huang, Chen, Cera, Brian, Zhu, Edward L, Edmunds, Riley, Rice, Franklin, Bronars, Antonia, Tang, Ellande, Malekshahi, Saunon R, Romero, Osvaldo, Agogino, Adrian K, Agogino, Alice M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lee-Huang, Chen
Cera, Brian
Zhu, Edward L
Edmunds, Riley
Rice, Franklin
Bronars, Antonia
Tang, Ellande
Malekshahi, Saunon R
Romero, Osvaldo
Agogino, Adrian K
Agogino, Alice M
description This paper presents a new teleoperated spherical tensegrity robot capable of performing locomotion on steep inclined surfaces. With a novel control scheme centered around the simultaneous actuation of multiple cables, the robot demonstrates robust climbing on inclined surfaces in hardware experiments and speeds significantly faster than previous spherical tensegrity models. This robot is an improvement over other iterations in the TT-series and the first tensegrity to achieve reliable locomotion on inclined surfaces of up to 24\degree. We analyze locomotion in simulation and hardware under single and multi-cable actuation, and introduce two novel multi-cable actuation policies, suited for steep incline climbing and speed, respectively. We propose compelling justifications for the increased dynamic ability of the robot and motivate development of optimization algorithms able to take advantage of the robot's increased control authority.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075684537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075684537</sourcerecordid><originalsourceid>FETCH-proquest_journals_20756845373</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLnElqS4HdSDRxEnZT6wNLsA_bMvj3OvgBTnc4d8ESIeUuq3IhViwNYeCci6IUSsmE1SdnRuvwDs3sO20QzmToSdGSgyZ6HbG3GKAjD830QG-NHqFFF7D3Nr7hQjeKYcOWnR4Dpr-u2bY-tPtjNnl6zRjidaDZuy9dBS9VUeVKlvK_6wPvATu_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075684537</pqid></control><display><type>article</type><title>Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots</title><source>Free E- Journals</source><creator>Lee-Huang, Chen ; Cera, Brian ; Zhu, Edward L ; Edmunds, Riley ; Rice, Franklin ; Bronars, Antonia ; Tang, Ellande ; Malekshahi, Saunon R ; Romero, Osvaldo ; Agogino, Adrian K ; Agogino, Alice M</creator><creatorcontrib>Lee-Huang, Chen ; Cera, Brian ; Zhu, Edward L ; Edmunds, Riley ; Rice, Franklin ; Bronars, Antonia ; Tang, Ellande ; Malekshahi, Saunon R ; Romero, Osvaldo ; Agogino, Adrian K ; Agogino, Alice M</creatorcontrib><description>This paper presents a new teleoperated spherical tensegrity robot capable of performing locomotion on steep inclined surfaces. With a novel control scheme centered around the simultaneous actuation of multiple cables, the robot demonstrates robust climbing on inclined surfaces in hardware experiments and speeds significantly faster than previous spherical tensegrity models. This robot is an improvement over other iterations in the TT-series and the first tensegrity to achieve reliable locomotion on inclined surfaces of up to 24\degree. We analyze locomotion in simulation and hardware under single and multi-cable actuation, and introduce two novel multi-cable actuation policies, suited for steep incline climbing and speed, respectively. We propose compelling justifications for the increased dynamic ability of the robot and motivate development of optimization algorithms able to take advantage of the robot's increased control authority.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuation ; Algorithms ; Cables ; Computer simulation ; Hardware ; Locomotion ; Optimization ; Robot control ; Robot dynamics ; Robots ; Tensegrity</subject><ispartof>arXiv.org, 2017-08</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Lee-Huang, Chen</creatorcontrib><creatorcontrib>Cera, Brian</creatorcontrib><creatorcontrib>Zhu, Edward L</creatorcontrib><creatorcontrib>Edmunds, Riley</creatorcontrib><creatorcontrib>Rice, Franklin</creatorcontrib><creatorcontrib>Bronars, Antonia</creatorcontrib><creatorcontrib>Tang, Ellande</creatorcontrib><creatorcontrib>Malekshahi, Saunon R</creatorcontrib><creatorcontrib>Romero, Osvaldo</creatorcontrib><creatorcontrib>Agogino, Adrian K</creatorcontrib><creatorcontrib>Agogino, Alice M</creatorcontrib><title>Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots</title><title>arXiv.org</title><description>This paper presents a new teleoperated spherical tensegrity robot capable of performing locomotion on steep inclined surfaces. With a novel control scheme centered around the simultaneous actuation of multiple cables, the robot demonstrates robust climbing on inclined surfaces in hardware experiments and speeds significantly faster than previous spherical tensegrity models. This robot is an improvement over other iterations in the TT-series and the first tensegrity to achieve reliable locomotion on inclined surfaces of up to 24\degree. We analyze locomotion in simulation and hardware under single and multi-cable actuation, and introduce two novel multi-cable actuation policies, suited for steep incline climbing and speed, respectively. We propose compelling justifications for the increased dynamic ability of the robot and motivate development of optimization algorithms able to take advantage of the robot's increased control authority.</description><subject>Actuation</subject><subject>Algorithms</subject><subject>Cables</subject><subject>Computer simulation</subject><subject>Hardware</subject><subject>Locomotion</subject><subject>Optimization</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Tensegrity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLnElqS4HdSDRxEnZT6wNLsA_bMvj3OvgBTnc4d8ESIeUuq3IhViwNYeCci6IUSsmE1SdnRuvwDs3sO20QzmToSdGSgyZ6HbG3GKAjD830QG-NHqFFF7D3Nr7hQjeKYcOWnR4Dpr-u2bY-tPtjNnl6zRjidaDZuy9dBS9VUeVKlvK_6wPvATu_</recordid><startdate>20170827</startdate><enddate>20170827</enddate><creator>Lee-Huang, Chen</creator><creator>Cera, Brian</creator><creator>Zhu, Edward L</creator><creator>Edmunds, Riley</creator><creator>Rice, Franklin</creator><creator>Bronars, Antonia</creator><creator>Tang, Ellande</creator><creator>Malekshahi, Saunon R</creator><creator>Romero, Osvaldo</creator><creator>Agogino, Adrian K</creator><creator>Agogino, Alice M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170827</creationdate><title>Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots</title><author>Lee-Huang, Chen ; Cera, Brian ; Zhu, Edward L ; Edmunds, Riley ; Rice, Franklin ; Bronars, Antonia ; Tang, Ellande ; Malekshahi, Saunon R ; Romero, Osvaldo ; Agogino, Adrian K ; Agogino, Alice M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20756845373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actuation</topic><topic>Algorithms</topic><topic>Cables</topic><topic>Computer simulation</topic><topic>Hardware</topic><topic>Locomotion</topic><topic>Optimization</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Tensegrity</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee-Huang, Chen</creatorcontrib><creatorcontrib>Cera, Brian</creatorcontrib><creatorcontrib>Zhu, Edward L</creatorcontrib><creatorcontrib>Edmunds, Riley</creatorcontrib><creatorcontrib>Rice, Franklin</creatorcontrib><creatorcontrib>Bronars, Antonia</creatorcontrib><creatorcontrib>Tang, Ellande</creatorcontrib><creatorcontrib>Malekshahi, Saunon R</creatorcontrib><creatorcontrib>Romero, Osvaldo</creatorcontrib><creatorcontrib>Agogino, Adrian K</creatorcontrib><creatorcontrib>Agogino, Alice M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee-Huang, Chen</au><au>Cera, Brian</au><au>Zhu, Edward L</au><au>Edmunds, Riley</au><au>Rice, Franklin</au><au>Bronars, Antonia</au><au>Tang, Ellande</au><au>Malekshahi, Saunon R</au><au>Romero, Osvaldo</au><au>Agogino, Adrian K</au><au>Agogino, Alice M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots</atitle><jtitle>arXiv.org</jtitle><date>2017-08-27</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>This paper presents a new teleoperated spherical tensegrity robot capable of performing locomotion on steep inclined surfaces. With a novel control scheme centered around the simultaneous actuation of multiple cables, the robot demonstrates robust climbing on inclined surfaces in hardware experiments and speeds significantly faster than previous spherical tensegrity models. This robot is an improvement over other iterations in the TT-series and the first tensegrity to achieve reliable locomotion on inclined surfaces of up to 24\degree. We analyze locomotion in simulation and hardware under single and multi-cable actuation, and introduce two novel multi-cable actuation policies, suited for steep incline climbing and speed, respectively. We propose compelling justifications for the increased dynamic ability of the robot and motivate development of optimization algorithms able to take advantage of the robot's increased control authority.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075684537
source Free E- Journals
subjects Actuation
Algorithms
Cables
Computer simulation
Hardware
Locomotion
Optimization
Robot control
Robot dynamics
Robots
Tensegrity
title Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Inclined%20Surface%20Locomotion%20Strategies%20for%20Spherical%20Tensegrity%20Robots&rft.jtitle=arXiv.org&rft.au=Lee-Huang,%20Chen&rft.date=2017-08-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075684537%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075684537&rft_id=info:pmid/&rfr_iscdi=true