The general case on the order of appearance of product of consecutive Fibonacci and Lucas numbers

Let \(F_{n}\) and \(L_n\) be the \(n\)th Fibonacci and Lucas number, respectively. For each positive integer \(m\), the order of appearance of \(m\) in the Fibonacci sequence, denoted by \(z(m)\), is the smallest positive integer \(k\) such that \(m\) divides \(F_k\). Recently, D. Marques has obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-07
Hauptverfasser: Khaochim, Narissara, Pongsriiam, Prapanpong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!