A spectral-infinite-element solution of Poisson's equation: an application to self gravity

We solve Poisson's equation by combining a spectral-element method with a mapped infinite-element method. We focus on problems in geostatics and geodynamics, where Earth's gravitational field is determined by Poisson's equation inside the Earth and Laplace's equation in the rest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-06
Hauptverfasser: Gharti, Hom Nath, Tromp, Jeroen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gharti, Hom Nath
Tromp, Jeroen
description We solve Poisson's equation by combining a spectral-element method with a mapped infinite-element method. We focus on problems in geostatics and geodynamics, where Earth's gravitational field is determined by Poisson's equation inside the Earth and Laplace's equation in the rest of space. Spectral elements are used to capture the internal field, and infinite elements are used to represent the external field. To solve the weak form of Poisson/Laplace equation, we use Gauss-Legendre-Lobatto quadrature in spectral elements inside the domain of interest. Outside the domain, we use Gauss-Radau quadrature in the infinite direction, and Gauss-Legendre-Lobatto quadrature in the other directions. We illustrate the efficiency and accuracy of the method by comparing the gravitational fields of a homogeneous sphere and the Preliminary Reference Earth Model (PREM) with (semi-)analytical solutions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075667129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075667129</sourcerecordid><originalsourceid>FETCH-proquest_journals_20756671293</originalsourceid><addsrcrecordid>eNqNir0KwjAURoMgWLTvcMHBqRAT26qbiOLo4ORSQrmRlJjb9qaCb-8PPoDTxznnG4lEab3M1iulJiJlbqSUqihVnutEXHfALdaxNz5zwbrgImbo8Y4hApMfoqMAZOFMjpnCggG7wXzsFkwA07be1V-GSMDoLdx683DxORNjazxj-tupmB8Pl_0pa3vqBuRYNTT04Z0qJcu8KMql2uj_Xi9m8UMf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075667129</pqid></control><display><type>article</type><title>A spectral-infinite-element solution of Poisson's equation: an application to self gravity</title><source>Free E- Journals</source><creator>Gharti, Hom Nath ; Tromp, Jeroen</creator><creatorcontrib>Gharti, Hom Nath ; Tromp, Jeroen</creatorcontrib><description>We solve Poisson's equation by combining a spectral-element method with a mapped infinite-element method. We focus on problems in geostatics and geodynamics, where Earth's gravitational field is determined by Poisson's equation inside the Earth and Laplace's equation in the rest of space. Spectral elements are used to capture the internal field, and infinite elements are used to represent the external field. To solve the weak form of Poisson/Laplace equation, we use Gauss-Legendre-Lobatto quadrature in spectral elements inside the domain of interest. Outside the domain, we use Gauss-Radau quadrature in the infinite direction, and Gauss-Legendre-Lobatto quadrature in the other directions. We illustrate the efficiency and accuracy of the method by comparing the gravitational fields of a homogeneous sphere and the Preliminary Reference Earth Model (PREM) with (semi-)analytical solutions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Earth gravitation ; Earth models ; Exact solutions ; Geodynamics ; Geostatics ; Gravitation ; Gravitational fields ; Infinite elements ; Laplace equation ; Poisson equation ; Spectra ; Spectral element method</subject><ispartof>arXiv.org, 2017-06</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gharti, Hom Nath</creatorcontrib><creatorcontrib>Tromp, Jeroen</creatorcontrib><title>A spectral-infinite-element solution of Poisson's equation: an application to self gravity</title><title>arXiv.org</title><description>We solve Poisson's equation by combining a spectral-element method with a mapped infinite-element method. We focus on problems in geostatics and geodynamics, where Earth's gravitational field is determined by Poisson's equation inside the Earth and Laplace's equation in the rest of space. Spectral elements are used to capture the internal field, and infinite elements are used to represent the external field. To solve the weak form of Poisson/Laplace equation, we use Gauss-Legendre-Lobatto quadrature in spectral elements inside the domain of interest. Outside the domain, we use Gauss-Radau quadrature in the infinite direction, and Gauss-Legendre-Lobatto quadrature in the other directions. We illustrate the efficiency and accuracy of the method by comparing the gravitational fields of a homogeneous sphere and the Preliminary Reference Earth Model (PREM) with (semi-)analytical solutions.</description><subject>Earth gravitation</subject><subject>Earth models</subject><subject>Exact solutions</subject><subject>Geodynamics</subject><subject>Geostatics</subject><subject>Gravitation</subject><subject>Gravitational fields</subject><subject>Infinite elements</subject><subject>Laplace equation</subject><subject>Poisson equation</subject><subject>Spectra</subject><subject>Spectral element method</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0KwjAURoMgWLTvcMHBqRAT26qbiOLo4ORSQrmRlJjb9qaCb-8PPoDTxznnG4lEab3M1iulJiJlbqSUqihVnutEXHfALdaxNz5zwbrgImbo8Y4hApMfoqMAZOFMjpnCggG7wXzsFkwA07be1V-GSMDoLdx683DxORNjazxj-tupmB8Pl_0pa3vqBuRYNTT04Z0qJcu8KMql2uj_Xi9m8UMf</recordid><startdate>20170602</startdate><enddate>20170602</enddate><creator>Gharti, Hom Nath</creator><creator>Tromp, Jeroen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170602</creationdate><title>A spectral-infinite-element solution of Poisson's equation: an application to self gravity</title><author>Gharti, Hom Nath ; Tromp, Jeroen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20756671293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Earth gravitation</topic><topic>Earth models</topic><topic>Exact solutions</topic><topic>Geodynamics</topic><topic>Geostatics</topic><topic>Gravitation</topic><topic>Gravitational fields</topic><topic>Infinite elements</topic><topic>Laplace equation</topic><topic>Poisson equation</topic><topic>Spectra</topic><topic>Spectral element method</topic><toplevel>online_resources</toplevel><creatorcontrib>Gharti, Hom Nath</creatorcontrib><creatorcontrib>Tromp, Jeroen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gharti, Hom Nath</au><au>Tromp, Jeroen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A spectral-infinite-element solution of Poisson's equation: an application to self gravity</atitle><jtitle>arXiv.org</jtitle><date>2017-06-02</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We solve Poisson's equation by combining a spectral-element method with a mapped infinite-element method. We focus on problems in geostatics and geodynamics, where Earth's gravitational field is determined by Poisson's equation inside the Earth and Laplace's equation in the rest of space. Spectral elements are used to capture the internal field, and infinite elements are used to represent the external field. To solve the weak form of Poisson/Laplace equation, we use Gauss-Legendre-Lobatto quadrature in spectral elements inside the domain of interest. Outside the domain, we use Gauss-Radau quadrature in the infinite direction, and Gauss-Legendre-Lobatto quadrature in the other directions. We illustrate the efficiency and accuracy of the method by comparing the gravitational fields of a homogeneous sphere and the Preliminary Reference Earth Model (PREM) with (semi-)analytical solutions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075667129
source Free E- Journals
subjects Earth gravitation
Earth models
Exact solutions
Geodynamics
Geostatics
Gravitation
Gravitational fields
Infinite elements
Laplace equation
Poisson equation
Spectra
Spectral element method
title A spectral-infinite-element solution of Poisson's equation: an application to self gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20spectral-infinite-element%20solution%20of%20Poisson's%20equation:%20an%20application%20to%20self%20gravity&rft.jtitle=arXiv.org&rft.au=Gharti,%20Hom%20Nath&rft.date=2017-06-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075667129%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075667129&rft_id=info:pmid/&rfr_iscdi=true