Developing a Molecular Theory of Electromechanical Responses

Developing a bottom-up (molecular) theory for the electromechanical response of aperiodic materials is a prerequisite for understanding the piezoelectric properties of systems such as nanoparticles, (non-crystalline) polymers, or biomolecule agglomerates. The focus of this publication is to establis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-07
Hauptverfasser: Werling, Keith A, Hutchison, Geoffrey R, Lambrecht, Daniel S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Werling, Keith A
Hutchison, Geoffrey R
Lambrecht, Daniel S
description Developing a bottom-up (molecular) theory for the electromechanical response of aperiodic materials is a prerequisite for understanding the piezoelectric properties of systems such as nanoparticles, (non-crystalline) polymers, or biomolecule agglomerates. The focus of this publication is to establish a new language and formalism for describing molecular piezoelectric responses. More specifically, we define the molecular piezoelectric response tensor d, which necessarily differs from the known bulk definition due to the anisotropy and inhomogeneity at the molecular scale, and derive an analytical theory to calculate this tensor. Based on this new theory, we develop a computational procedure for practical calculations of piezoelectric matrices for molecular systems. Our studies demonstrate that the new analytical theory yields results that are consistent with fully numerical computations. This publication is the first in a series; this work establishes the theoretical molecular foundation and follow-up publications will show how to bridge molecular and macroscopic piezoelectric responses. It is expected that the present work will aid in developing design strategies for piezoelectric materials by revealing connections between molecular structure and piezoelectric response. We expect that the language and formalism developed here may also be useful to describe mechanochemical phenomena.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075659339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075659339</sourcerecordid><originalsourceid>FETCH-proquest_journals_20756593393</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_EHAuxMS0Fty04uIi3UsIr7Yl5sW8VvDv7eAHOB3c3YIlUqlddthLuWIp0SCEkHkhtVYJO57hDQ5D7x_c8Bs6sJMzkdcdYPxwbHk1qzHiE2xnfG-N43eggJ6ANmzZGkeQ_rhm20tVn65ZiPiagMZmwCn6OTVSFDrXpVKl-u_6Ak_1N9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075659339</pqid></control><display><type>article</type><title>Developing a Molecular Theory of Electromechanical Responses</title><source>Free E- Journals</source><creator>Werling, Keith A ; Hutchison, Geoffrey R ; Lambrecht, Daniel S</creator><creatorcontrib>Werling, Keith A ; Hutchison, Geoffrey R ; Lambrecht, Daniel S</creatorcontrib><description>Developing a bottom-up (molecular) theory for the electromechanical response of aperiodic materials is a prerequisite for understanding the piezoelectric properties of systems such as nanoparticles, (non-crystalline) polymers, or biomolecule agglomerates. The focus of this publication is to establish a new language and formalism for describing molecular piezoelectric responses. More specifically, we define the molecular piezoelectric response tensor d, which necessarily differs from the known bulk definition due to the anisotropy and inhomogeneity at the molecular scale, and derive an analytical theory to calculate this tensor. Based on this new theory, we develop a computational procedure for practical calculations of piezoelectric matrices for molecular systems. Our studies demonstrate that the new analytical theory yields results that are consistent with fully numerical computations. This publication is the first in a series; this work establishes the theoretical molecular foundation and follow-up publications will show how to bridge molecular and macroscopic piezoelectric responses. It is expected that the present work will aid in developing design strategies for piezoelectric materials by revealing connections between molecular structure and piezoelectric response. We expect that the language and formalism developed here may also be useful to describe mechanochemical phenomena.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agglomerates ; Anisotropy ; Formalism ; Inhomogeneity ; Mathematical analysis ; Molecular structure ; Molecular theory ; Nanoparticles ; Piezoelectricity ; Tensors ; Theory</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Werling, Keith A</creatorcontrib><creatorcontrib>Hutchison, Geoffrey R</creatorcontrib><creatorcontrib>Lambrecht, Daniel S</creatorcontrib><title>Developing a Molecular Theory of Electromechanical Responses</title><title>arXiv.org</title><description>Developing a bottom-up (molecular) theory for the electromechanical response of aperiodic materials is a prerequisite for understanding the piezoelectric properties of systems such as nanoparticles, (non-crystalline) polymers, or biomolecule agglomerates. The focus of this publication is to establish a new language and formalism for describing molecular piezoelectric responses. More specifically, we define the molecular piezoelectric response tensor d, which necessarily differs from the known bulk definition due to the anisotropy and inhomogeneity at the molecular scale, and derive an analytical theory to calculate this tensor. Based on this new theory, we develop a computational procedure for practical calculations of piezoelectric matrices for molecular systems. Our studies demonstrate that the new analytical theory yields results that are consistent with fully numerical computations. This publication is the first in a series; this work establishes the theoretical molecular foundation and follow-up publications will show how to bridge molecular and macroscopic piezoelectric responses. It is expected that the present work will aid in developing design strategies for piezoelectric materials by revealing connections between molecular structure and piezoelectric response. We expect that the language and formalism developed here may also be useful to describe mechanochemical phenomena.</description><subject>Agglomerates</subject><subject>Anisotropy</subject><subject>Formalism</subject><subject>Inhomogeneity</subject><subject>Mathematical analysis</subject><subject>Molecular structure</subject><subject>Molecular theory</subject><subject>Nanoparticles</subject><subject>Piezoelectricity</subject><subject>Tensors</subject><subject>Theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNirEKwjAUAIMgWLT_EHAuxMS0Fty04uIi3UsIr7Yl5sW8VvDv7eAHOB3c3YIlUqlddthLuWIp0SCEkHkhtVYJO57hDQ5D7x_c8Bs6sJMzkdcdYPxwbHk1qzHiE2xnfG-N43eggJ6ANmzZGkeQ_rhm20tVn65ZiPiagMZmwCn6OTVSFDrXpVKl-u_6Ak_1N9o</recordid><startdate>20170724</startdate><enddate>20170724</enddate><creator>Werling, Keith A</creator><creator>Hutchison, Geoffrey R</creator><creator>Lambrecht, Daniel S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170724</creationdate><title>Developing a Molecular Theory of Electromechanical Responses</title><author>Werling, Keith A ; Hutchison, Geoffrey R ; Lambrecht, Daniel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20756593393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agglomerates</topic><topic>Anisotropy</topic><topic>Formalism</topic><topic>Inhomogeneity</topic><topic>Mathematical analysis</topic><topic>Molecular structure</topic><topic>Molecular theory</topic><topic>Nanoparticles</topic><topic>Piezoelectricity</topic><topic>Tensors</topic><topic>Theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Werling, Keith A</creatorcontrib><creatorcontrib>Hutchison, Geoffrey R</creatorcontrib><creatorcontrib>Lambrecht, Daniel S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Werling, Keith A</au><au>Hutchison, Geoffrey R</au><au>Lambrecht, Daniel S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Developing a Molecular Theory of Electromechanical Responses</atitle><jtitle>arXiv.org</jtitle><date>2017-07-24</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Developing a bottom-up (molecular) theory for the electromechanical response of aperiodic materials is a prerequisite for understanding the piezoelectric properties of systems such as nanoparticles, (non-crystalline) polymers, or biomolecule agglomerates. The focus of this publication is to establish a new language and formalism for describing molecular piezoelectric responses. More specifically, we define the molecular piezoelectric response tensor d, which necessarily differs from the known bulk definition due to the anisotropy and inhomogeneity at the molecular scale, and derive an analytical theory to calculate this tensor. Based on this new theory, we develop a computational procedure for practical calculations of piezoelectric matrices for molecular systems. Our studies demonstrate that the new analytical theory yields results that are consistent with fully numerical computations. This publication is the first in a series; this work establishes the theoretical molecular foundation and follow-up publications will show how to bridge molecular and macroscopic piezoelectric responses. It is expected that the present work will aid in developing design strategies for piezoelectric materials by revealing connections between molecular structure and piezoelectric response. We expect that the language and formalism developed here may also be useful to describe mechanochemical phenomena.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075659339
source Free E- Journals
subjects Agglomerates
Anisotropy
Formalism
Inhomogeneity
Mathematical analysis
Molecular structure
Molecular theory
Nanoparticles
Piezoelectricity
Tensors
Theory
title Developing a Molecular Theory of Electromechanical Responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Developing%20a%20Molecular%20Theory%20of%20Electromechanical%20Responses&rft.jtitle=arXiv.org&rft.au=Werling,%20Keith%20A&rft.date=2017-07-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075659339%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075659339&rft_id=info:pmid/&rfr_iscdi=true