A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration
Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions,...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical imaging and vision 2018-09, Vol.60 (7), p.1150-1166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1166 |
---|---|
container_issue | 7 |
container_start_page | 1150 |
container_title | Journal of mathematical imaging and vision |
container_volume | 60 |
creator | Li, Qiang Deng, Tingquan |
description | Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions, some state-of-the-art nonparametric statistical snakes often converge to boundaries of some subregions and give a false segmentation. In this paper, we formulate the integration of the minimum of the probability densities inside and outside the active contour as an energy functional and seek to minimize it with our active contour model. The independent and identically distributed assumption is also needed here. However, our presented theoretical analysis and various experimental results demonstrate that the proposed model overcomes the problem of existing ones associated with converging to subregion boundary. In addition, the proposed model requires an explicit and uniform initial condition, and so is more convenient for application. Finally, it does not have the so-called numerical conditioning problem which arises with some existing active contour models. |
doi_str_mv | 10.1007/s10851-018-0801-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075607925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075607925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-7af83d16a24d0413e124350a9f4ab60ae1e8bb89393acf7d6d08108dc0d8bd5d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wF3AdfRlvpJZlmproVWhdh0yk0xNnUlqkiL9904ZwZWru7n3PN5B6JbCPQVgD4ECzykByglwoCQ_QyOas5SwgqfnaARlkpGyBHaJrkLYAQBPKBuh3QS_OLuXXnY6elPjdZTRhGhq2eK1lZ8ar5zSLd4EY7c4fmg891IZbSOete4buwavjDXdocNv3lWyMq2JR_yobTjlwka99T3S2Wt00cg26JvfHKPN7Ol9-kyWr_PFdLIkdVLwSJhseKpoIZNMQUZTTZMszUGWTSarAqSmmlcVL9MylXXDVKGA98-rGhSvVK7SMbobuHvvvg46RLFzB2_7kyIBlhfAyiTvW3Ro1d6F4HUj9t500h8FBXFSKgalolcqTkrFaZMMm9B37Vb7P_L_ox_EiXoB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075607925</pqid></control><display><type>article</type><title>A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Qiang ; Deng, Tingquan</creator><creatorcontrib>Li, Qiang ; Deng, Tingquan</creatorcontrib><description>Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions, some state-of-the-art nonparametric statistical snakes often converge to boundaries of some subregions and give a false segmentation. In this paper, we formulate the integration of the minimum of the probability densities inside and outside the active contour as an energy functional and seek to minimize it with our active contour model. The independent and identically distributed assumption is also needed here. However, our presented theoretical analysis and various experimental results demonstrate that the proposed model overcomes the problem of existing ones associated with converging to subregion boundary. In addition, the proposed model requires an explicit and uniform initial condition, and so is more convenient for application. Finally, it does not have the so-called numerical conditioning problem which arises with some existing active contour models.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-018-0801-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Contours ; Convergence ; Energy conservation ; Gradient flow ; Image Processing and Computer Vision ; Image segmentation ; Mathematical Methods in Physics ; Mathematical models ; Nonparametric statistics ; Shape ; Signal,Image and Speech Processing ; Snakes ; Statistical analysis</subject><ispartof>Journal of mathematical imaging and vision, 2018-09, Vol.60 (7), p.1150-1166</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-7af83d16a24d0413e124350a9f4ab60ae1e8bb89393acf7d6d08108dc0d8bd5d3</cites><orcidid>0000-0002-4079-8999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-018-0801-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-018-0801-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Deng, Tingquan</creatorcontrib><title>A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions, some state-of-the-art nonparametric statistical snakes often converge to boundaries of some subregions and give a false segmentation. In this paper, we formulate the integration of the minimum of the probability densities inside and outside the active contour as an energy functional and seek to minimize it with our active contour model. The independent and identically distributed assumption is also needed here. However, our presented theoretical analysis and various experimental results demonstrate that the proposed model overcomes the problem of existing ones associated with converging to subregion boundary. In addition, the proposed model requires an explicit and uniform initial condition, and so is more convenient for application. Finally, it does not have the so-called numerical conditioning problem which arises with some existing active contour models.</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Contours</subject><subject>Convergence</subject><subject>Energy conservation</subject><subject>Gradient flow</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Nonparametric statistics</subject><subject>Shape</subject><subject>Signal,Image and Speech Processing</subject><subject>Snakes</subject><subject>Statistical analysis</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wF3AdfRlvpJZlmproVWhdh0yk0xNnUlqkiL9904ZwZWru7n3PN5B6JbCPQVgD4ECzykByglwoCQ_QyOas5SwgqfnaARlkpGyBHaJrkLYAQBPKBuh3QS_OLuXXnY6elPjdZTRhGhq2eK1lZ8ar5zSLd4EY7c4fmg891IZbSOete4buwavjDXdocNv3lWyMq2JR_yobTjlwka99T3S2Wt00cg26JvfHKPN7Ol9-kyWr_PFdLIkdVLwSJhseKpoIZNMQUZTTZMszUGWTSarAqSmmlcVL9MylXXDVKGA98-rGhSvVK7SMbobuHvvvg46RLFzB2_7kyIBlhfAyiTvW3Ro1d6F4HUj9t500h8FBXFSKgalolcqTkrFaZMMm9B37Vb7P_L_ox_EiXoB</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Qiang</creator><creator>Deng, Tingquan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4079-8999</orcidid></search><sort><creationdate>20180901</creationdate><title>A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration</title><author>Li, Qiang ; Deng, Tingquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-7af83d16a24d0413e124350a9f4ab60ae1e8bb89393acf7d6d08108dc0d8bd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Contours</topic><topic>Convergence</topic><topic>Energy conservation</topic><topic>Gradient flow</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Nonparametric statistics</topic><topic>Shape</topic><topic>Signal,Image and Speech Processing</topic><topic>Snakes</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Deng, Tingquan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiang</au><au>Deng, Tingquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>60</volume><issue>7</issue><spage>1150</spage><epage>1166</epage><pages>1150-1166</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions, some state-of-the-art nonparametric statistical snakes often converge to boundaries of some subregions and give a false segmentation. In this paper, we formulate the integration of the minimum of the probability densities inside and outside the active contour as an energy functional and seek to minimize it with our active contour model. The independent and identically distributed assumption is also needed here. However, our presented theoretical analysis and various experimental results demonstrate that the proposed model overcomes the problem of existing ones associated with converging to subregion boundary. In addition, the proposed model requires an explicit and uniform initial condition, and so is more convenient for application. Finally, it does not have the so-called numerical conditioning problem which arises with some existing active contour models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-018-0801-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4079-8999</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-9907 |
ispartof | Journal of mathematical imaging and vision, 2018-09, Vol.60 (7), p.1150-1166 |
issn | 0924-9907 1573-7683 |
language | eng |
recordid | cdi_proquest_journals_2075607925 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Computer Science Contours Convergence Energy conservation Gradient flow Image Processing and Computer Vision Image segmentation Mathematical Methods in Physics Mathematical models Nonparametric statistics Shape Signal,Image and Speech Processing Snakes Statistical analysis |
title | A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonparametric%20Statistical%20Snake%20Model%20Using%20the%20Gradient%20Flow%20of%20Minimum%20Probability%20Density%20Integration&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Li,%20Qiang&rft.date=2018-09-01&rft.volume=60&rft.issue=7&rft.spage=1150&rft.epage=1166&rft.pages=1150-1166&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-018-0801-5&rft_dat=%3Cproquest_cross%3E2075607925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075607925&rft_id=info:pmid/&rfr_iscdi=true |