A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration

Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2018-09, Vol.60 (7), p.1150-1166
Hauptverfasser: Li, Qiang, Deng, Tingquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1166
container_issue 7
container_start_page 1150
container_title Journal of mathematical imaging and vision
container_volume 60
creator Li, Qiang
Deng, Tingquan
description Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions, some state-of-the-art nonparametric statistical snakes often converge to boundaries of some subregions and give a false segmentation. In this paper, we formulate the integration of the minimum of the probability densities inside and outside the active contour as an energy functional and seek to minimize it with our active contour model. The independent and identically distributed assumption is also needed here. However, our presented theoretical analysis and various experimental results demonstrate that the proposed model overcomes the problem of existing ones associated with converging to subregion boundary. In addition, the proposed model requires an explicit and uniform initial condition, and so is more convenient for application. Finally, it does not have the so-called numerical conditioning problem which arises with some existing active contour models.
doi_str_mv 10.1007/s10851-018-0801-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075607925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075607925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-7af83d16a24d0413e124350a9f4ab60ae1e8bb89393acf7d6d08108dc0d8bd5d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wF3AdfRlvpJZlmproVWhdh0yk0xNnUlqkiL9904ZwZWru7n3PN5B6JbCPQVgD4ECzykByglwoCQ_QyOas5SwgqfnaARlkpGyBHaJrkLYAQBPKBuh3QS_OLuXXnY6elPjdZTRhGhq2eK1lZ8ar5zSLd4EY7c4fmg891IZbSOete4buwavjDXdocNv3lWyMq2JR_yobTjlwka99T3S2Wt00cg26JvfHKPN7Ol9-kyWr_PFdLIkdVLwSJhseKpoIZNMQUZTTZMszUGWTSarAqSmmlcVL9MylXXDVKGA98-rGhSvVK7SMbobuHvvvg46RLFzB2_7kyIBlhfAyiTvW3Ro1d6F4HUj9t500h8FBXFSKgalolcqTkrFaZMMm9B37Vb7P_L_ox_EiXoB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075607925</pqid></control><display><type>article</type><title>A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Qiang ; Deng, Tingquan</creator><creatorcontrib>Li, Qiang ; Deng, Tingquan</creatorcontrib><description>Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions, some state-of-the-art nonparametric statistical snakes often converge to boundaries of some subregions and give a false segmentation. In this paper, we formulate the integration of the minimum of the probability densities inside and outside the active contour as an energy functional and seek to minimize it with our active contour model. The independent and identically distributed assumption is also needed here. However, our presented theoretical analysis and various experimental results demonstrate that the proposed model overcomes the problem of existing ones associated with converging to subregion boundary. In addition, the proposed model requires an explicit and uniform initial condition, and so is more convenient for application. Finally, it does not have the so-called numerical conditioning problem which arises with some existing active contour models.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-018-0801-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Contours ; Convergence ; Energy conservation ; Gradient flow ; Image Processing and Computer Vision ; Image segmentation ; Mathematical Methods in Physics ; Mathematical models ; Nonparametric statistics ; Shape ; Signal,Image and Speech Processing ; Snakes ; Statistical analysis</subject><ispartof>Journal of mathematical imaging and vision, 2018-09, Vol.60 (7), p.1150-1166</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-7af83d16a24d0413e124350a9f4ab60ae1e8bb89393acf7d6d08108dc0d8bd5d3</cites><orcidid>0000-0002-4079-8999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-018-0801-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-018-0801-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Deng, Tingquan</creatorcontrib><title>A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions, some state-of-the-art nonparametric statistical snakes often converge to boundaries of some subregions and give a false segmentation. In this paper, we formulate the integration of the minimum of the probability densities inside and outside the active contour as an energy functional and seek to minimize it with our active contour model. The independent and identically distributed assumption is also needed here. However, our presented theoretical analysis and various experimental results demonstrate that the proposed model overcomes the problem of existing ones associated with converging to subregion boundary. In addition, the proposed model requires an explicit and uniform initial condition, and so is more convenient for application. Finally, it does not have the so-called numerical conditioning problem which arises with some existing active contour models.</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Contours</subject><subject>Convergence</subject><subject>Energy conservation</subject><subject>Gradient flow</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Nonparametric statistics</subject><subject>Shape</subject><subject>Signal,Image and Speech Processing</subject><subject>Snakes</subject><subject>Statistical analysis</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wF3AdfRlvpJZlmproVWhdh0yk0xNnUlqkiL9904ZwZWru7n3PN5B6JbCPQVgD4ECzykByglwoCQ_QyOas5SwgqfnaARlkpGyBHaJrkLYAQBPKBuh3QS_OLuXXnY6elPjdZTRhGhq2eK1lZ8ar5zSLd4EY7c4fmg891IZbSOete4buwavjDXdocNv3lWyMq2JR_yobTjlwka99T3S2Wt00cg26JvfHKPN7Ol9-kyWr_PFdLIkdVLwSJhseKpoIZNMQUZTTZMszUGWTSarAqSmmlcVL9MylXXDVKGA98-rGhSvVK7SMbobuHvvvg46RLFzB2_7kyIBlhfAyiTvW3Ro1d6F4HUj9t500h8FBXFSKgalolcqTkrFaZMMm9B37Vb7P_L_ox_EiXoB</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Qiang</creator><creator>Deng, Tingquan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4079-8999</orcidid></search><sort><creationdate>20180901</creationdate><title>A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration</title><author>Li, Qiang ; Deng, Tingquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-7af83d16a24d0413e124350a9f4ab60ae1e8bb89393acf7d6d08108dc0d8bd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Contours</topic><topic>Convergence</topic><topic>Energy conservation</topic><topic>Gradient flow</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Nonparametric statistics</topic><topic>Shape</topic><topic>Signal,Image and Speech Processing</topic><topic>Snakes</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Deng, Tingquan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiang</au><au>Deng, Tingquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>60</volume><issue>7</issue><spage>1150</spage><epage>1166</epage><pages>1150-1166</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>Nonparametric statistical snakes, constructed under the independent and identically distributed assumption, are an important class of methods for cluttered image segmentation. However, in application, when object or background contains more than one subregions with different intensity distributions, some state-of-the-art nonparametric statistical snakes often converge to boundaries of some subregions and give a false segmentation. In this paper, we formulate the integration of the minimum of the probability densities inside and outside the active contour as an energy functional and seek to minimize it with our active contour model. The independent and identically distributed assumption is also needed here. However, our presented theoretical analysis and various experimental results demonstrate that the proposed model overcomes the problem of existing ones associated with converging to subregion boundary. In addition, the proposed model requires an explicit and uniform initial condition, and so is more convenient for application. Finally, it does not have the so-called numerical conditioning problem which arises with some existing active contour models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-018-0801-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4079-8999</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2018-09, Vol.60 (7), p.1150-1166
issn 0924-9907
1573-7683
language eng
recordid cdi_proquest_journals_2075607925
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Computer Science
Contours
Convergence
Energy conservation
Gradient flow
Image Processing and Computer Vision
Image segmentation
Mathematical Methods in Physics
Mathematical models
Nonparametric statistics
Shape
Signal,Image and Speech Processing
Snakes
Statistical analysis
title A Nonparametric Statistical Snake Model Using the Gradient Flow of Minimum Probability Density Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonparametric%20Statistical%20Snake%20Model%20Using%20the%20Gradient%20Flow%20of%20Minimum%20Probability%20Density%20Integration&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Li,%20Qiang&rft.date=2018-09-01&rft.volume=60&rft.issue=7&rft.spage=1150&rft.epage=1166&rft.pages=1150-1166&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-018-0801-5&rft_dat=%3Cproquest_cross%3E2075607925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075607925&rft_id=info:pmid/&rfr_iscdi=true