Engineering nanoporous Ag/Pd core/shell interfaces with ultrathin Pt doping for efficient hydrogen evolution reaction over a wide pH range

The rational design and fabrication of highly efficient and durable all-pH catalysts for sustainable electrochemical hydrogen production are of critical importance to building renewable energy systems for the future. By employing an in situ electrochemical alloying/dealloying generated nanoporous Ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (29), p.14281-14290
Hauptverfasser: Yang, C., Lei, H., Zhou, W. Z., Zeng, J. R., Zhang, Q. B., Hua, Y. X., Xu, C. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14290
container_issue 29
container_start_page 14281
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Yang, C.
Lei, H.
Zhou, W. Z.
Zeng, J. R.
Zhang, Q. B.
Hua, Y. X.
Xu, C. Y.
description The rational design and fabrication of highly efficient and durable all-pH catalysts for sustainable electrochemical hydrogen production are of critical importance to building renewable energy systems for the future. By employing an in situ electrochemical alloying/dealloying generated nanoporous Ag (NPA) as the supporting substrate, we propose a facile galvanic replacement reaction (GRR) synthesis route in a deep eutectic solvent (Ethaline), combined with an electrochemical activation process to fabricate monolithic 3D nanoporous Ag/Pd core/shell hybrids with ultrathin (sub 1 nm) amorphous Pt-rich skin (Pt–Pd@NPA), showing excellent hydrogen evolution reaction (HER) catalytic performance and durability over a wide pH range. The optimized Pt–Pd@NPA requires low overpotentials of −28.1, −34.8, and −23.8 mV to drive a catalytic current density of −10 mA cm −2 with small Tafel slopes of 31.2, 32.2, and 32.5 mV dec −1 in acidic (0.5 M H 2 SO 4 ), neutral (1.0 M PBS), and alkaline (1.0 M KOH) media, respectively, which outperforms most previously reported noble-metal-based HER electrocatalysts. Impressively, this hybrid catalyst is capable of steadily delivering a fairly large current density of 1000 mA cm −2 in highly acidic media (0.5–7.0 M H 2 SO 4 ), promising its practical use in advanced water-splitting devices. The superior HER performance is ascribed to the 3D interconnected nanoporous architectures and synergies between the Ag–Pd skeletons and active Pt. Theoretical calculations confirm that the electronic structure of the Ag–Pd hybrids is optimized by the incorporation of Pt, which results in optimal hydrogen adsorption free energy on the surface and leads to significantly enhanced HER activity and durability. Our work offers a new idea for the design and fabrication of advanced high-performance electrocatalysts for the HER over a wide range of pH values.
doi_str_mv 10.1039/C8TA04059A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075405550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075405550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-9cca9e7a1e11f8a817ba485a3bacd27a08f333017c363ebaba5f1149a902b24e3</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYsoOOZe_AUB34S6pGnX5rGM6QTBPczncpvedBk1qUk62V_wV9s50fNyz8O558AXRbeMPjDKxXxZbEua0kyUF9EkoRmN81QsLv98UVxHM-_3dFRB6UKISfS1Mq02iE6blhgwtrfODp6U7XzTEGkdzv0Ou45oE9ApkOjJpw47MnTBQdhpQzaBNLY__SvrCCqlpUYTyO7YONuiIXiw3RC0NcQhyB9jD-gIjE0Nkn5NHJgWb6IrBZ3H2e-dRm-Pq-1yHb-8Pj0vy5dYJmIRYiElCMyBIWOqgILlNaRFBrwG2SQ50EJxzinLJV9wrKGGTDGWChA0qZMU-TS6O_f2zn4M6EO1t4Mz42SV0DwbAWYZHVP355R01nuHquqdfgd3rBitTrirf9z8G-uSdGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075405550</pqid></control><display><type>article</type><title>Engineering nanoporous Ag/Pd core/shell interfaces with ultrathin Pt doping for efficient hydrogen evolution reaction over a wide pH range</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yang, C. ; Lei, H. ; Zhou, W. Z. ; Zeng, J. R. ; Zhang, Q. B. ; Hua, Y. X. ; Xu, C. Y.</creator><creatorcontrib>Yang, C. ; Lei, H. ; Zhou, W. Z. ; Zeng, J. R. ; Zhang, Q. B. ; Hua, Y. X. ; Xu, C. Y.</creatorcontrib><description>The rational design and fabrication of highly efficient and durable all-pH catalysts for sustainable electrochemical hydrogen production are of critical importance to building renewable energy systems for the future. By employing an in situ electrochemical alloying/dealloying generated nanoporous Ag (NPA) as the supporting substrate, we propose a facile galvanic replacement reaction (GRR) synthesis route in a deep eutectic solvent (Ethaline), combined with an electrochemical activation process to fabricate monolithic 3D nanoporous Ag/Pd core/shell hybrids with ultrathin (sub 1 nm) amorphous Pt-rich skin (Pt–Pd@NPA), showing excellent hydrogen evolution reaction (HER) catalytic performance and durability over a wide pH range. The optimized Pt–Pd@NPA requires low overpotentials of −28.1, −34.8, and −23.8 mV to drive a catalytic current density of −10 mA cm −2 with small Tafel slopes of 31.2, 32.2, and 32.5 mV dec −1 in acidic (0.5 M H 2 SO 4 ), neutral (1.0 M PBS), and alkaline (1.0 M KOH) media, respectively, which outperforms most previously reported noble-metal-based HER electrocatalysts. Impressively, this hybrid catalyst is capable of steadily delivering a fairly large current density of 1000 mA cm −2 in highly acidic media (0.5–7.0 M H 2 SO 4 ), promising its practical use in advanced water-splitting devices. The superior HER performance is ascribed to the 3D interconnected nanoporous architectures and synergies between the Ag–Pd skeletons and active Pt. Theoretical calculations confirm that the electronic structure of the Ag–Pd hybrids is optimized by the incorporation of Pt, which results in optimal hydrogen adsorption free energy on the surface and leads to significantly enhanced HER activity and durability. Our work offers a new idea for the design and fabrication of advanced high-performance electrocatalysts for the HER over a wide range of pH values.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA04059A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alloy systems ; Catalysis ; Catalysts ; Chemical synthesis ; Current density ; Durability ; Electrocatalysts ; Electrochemical activation ; Electrochemistry ; Electronic structure ; Fabrication ; Free energy ; Hybrids ; Hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; Hydrogen-based energy ; Interfaces ; Noble metals ; Palladium ; pH effects ; Platinum ; Renewable energy ; Silver ; Skin ; Substrates ; Sulfuric acid ; Tafel slopes</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (29), p.14281-14290</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-9cca9e7a1e11f8a817ba485a3bacd27a08f333017c363ebaba5f1149a902b24e3</citedby><cites>FETCH-LOGICAL-c296t-9cca9e7a1e11f8a817ba485a3bacd27a08f333017c363ebaba5f1149a902b24e3</cites><orcidid>0000-0002-5714-5900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Lei, H.</creatorcontrib><creatorcontrib>Zhou, W. Z.</creatorcontrib><creatorcontrib>Zeng, J. R.</creatorcontrib><creatorcontrib>Zhang, Q. B.</creatorcontrib><creatorcontrib>Hua, Y. X.</creatorcontrib><creatorcontrib>Xu, C. Y.</creatorcontrib><title>Engineering nanoporous Ag/Pd core/shell interfaces with ultrathin Pt doping for efficient hydrogen evolution reaction over a wide pH range</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The rational design and fabrication of highly efficient and durable all-pH catalysts for sustainable electrochemical hydrogen production are of critical importance to building renewable energy systems for the future. By employing an in situ electrochemical alloying/dealloying generated nanoporous Ag (NPA) as the supporting substrate, we propose a facile galvanic replacement reaction (GRR) synthesis route in a deep eutectic solvent (Ethaline), combined with an electrochemical activation process to fabricate monolithic 3D nanoporous Ag/Pd core/shell hybrids with ultrathin (sub 1 nm) amorphous Pt-rich skin (Pt–Pd@NPA), showing excellent hydrogen evolution reaction (HER) catalytic performance and durability over a wide pH range. The optimized Pt–Pd@NPA requires low overpotentials of −28.1, −34.8, and −23.8 mV to drive a catalytic current density of −10 mA cm −2 with small Tafel slopes of 31.2, 32.2, and 32.5 mV dec −1 in acidic (0.5 M H 2 SO 4 ), neutral (1.0 M PBS), and alkaline (1.0 M KOH) media, respectively, which outperforms most previously reported noble-metal-based HER electrocatalysts. Impressively, this hybrid catalyst is capable of steadily delivering a fairly large current density of 1000 mA cm −2 in highly acidic media (0.5–7.0 M H 2 SO 4 ), promising its practical use in advanced water-splitting devices. The superior HER performance is ascribed to the 3D interconnected nanoporous architectures and synergies between the Ag–Pd skeletons and active Pt. Theoretical calculations confirm that the electronic structure of the Ag–Pd hybrids is optimized by the incorporation of Pt, which results in optimal hydrogen adsorption free energy on the surface and leads to significantly enhanced HER activity and durability. Our work offers a new idea for the design and fabrication of advanced high-performance electrocatalysts for the HER over a wide range of pH values.</description><subject>Alloy systems</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Current density</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electrochemical activation</subject><subject>Electrochemistry</subject><subject>Electronic structure</subject><subject>Fabrication</subject><subject>Free energy</subject><subject>Hybrids</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Interfaces</subject><subject>Noble metals</subject><subject>Palladium</subject><subject>pH effects</subject><subject>Platinum</subject><subject>Renewable energy</subject><subject>Silver</subject><subject>Skin</subject><subject>Substrates</subject><subject>Sulfuric acid</subject><subject>Tafel slopes</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYsoOOZe_AUB34S6pGnX5rGM6QTBPczncpvedBk1qUk62V_wV9s50fNyz8O558AXRbeMPjDKxXxZbEua0kyUF9EkoRmN81QsLv98UVxHM-_3dFRB6UKISfS1Mq02iE6blhgwtrfODp6U7XzTEGkdzv0Ou45oE9ApkOjJpw47MnTBQdhpQzaBNLY__SvrCCqlpUYTyO7YONuiIXiw3RC0NcQhyB9jD-gIjE0Nkn5NHJgWb6IrBZ3H2e-dRm-Pq-1yHb-8Pj0vy5dYJmIRYiElCMyBIWOqgILlNaRFBrwG2SQ50EJxzinLJV9wrKGGTDGWChA0qZMU-TS6O_f2zn4M6EO1t4Mz42SV0DwbAWYZHVP355R01nuHquqdfgd3rBitTrirf9z8G-uSdGU</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Yang, C.</creator><creator>Lei, H.</creator><creator>Zhou, W. Z.</creator><creator>Zeng, J. R.</creator><creator>Zhang, Q. B.</creator><creator>Hua, Y. X.</creator><creator>Xu, C. Y.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5714-5900</orcidid></search><sort><creationdate>2018</creationdate><title>Engineering nanoporous Ag/Pd core/shell interfaces with ultrathin Pt doping for efficient hydrogen evolution reaction over a wide pH range</title><author>Yang, C. ; Lei, H. ; Zhou, W. Z. ; Zeng, J. R. ; Zhang, Q. B. ; Hua, Y. X. ; Xu, C. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-9cca9e7a1e11f8a817ba485a3bacd27a08f333017c363ebaba5f1149a902b24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloy systems</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Current density</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electrochemical activation</topic><topic>Electrochemistry</topic><topic>Electronic structure</topic><topic>Fabrication</topic><topic>Free energy</topic><topic>Hybrids</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Interfaces</topic><topic>Noble metals</topic><topic>Palladium</topic><topic>pH effects</topic><topic>Platinum</topic><topic>Renewable energy</topic><topic>Silver</topic><topic>Skin</topic><topic>Substrates</topic><topic>Sulfuric acid</topic><topic>Tafel slopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Lei, H.</creatorcontrib><creatorcontrib>Zhou, W. Z.</creatorcontrib><creatorcontrib>Zeng, J. R.</creatorcontrib><creatorcontrib>Zhang, Q. B.</creatorcontrib><creatorcontrib>Hua, Y. X.</creatorcontrib><creatorcontrib>Xu, C. Y.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, C.</au><au>Lei, H.</au><au>Zhou, W. Z.</au><au>Zeng, J. R.</au><au>Zhang, Q. B.</au><au>Hua, Y. X.</au><au>Xu, C. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering nanoporous Ag/Pd core/shell interfaces with ultrathin Pt doping for efficient hydrogen evolution reaction over a wide pH range</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>29</issue><spage>14281</spage><epage>14290</epage><pages>14281-14290</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The rational design and fabrication of highly efficient and durable all-pH catalysts for sustainable electrochemical hydrogen production are of critical importance to building renewable energy systems for the future. By employing an in situ electrochemical alloying/dealloying generated nanoporous Ag (NPA) as the supporting substrate, we propose a facile galvanic replacement reaction (GRR) synthesis route in a deep eutectic solvent (Ethaline), combined with an electrochemical activation process to fabricate monolithic 3D nanoporous Ag/Pd core/shell hybrids with ultrathin (sub 1 nm) amorphous Pt-rich skin (Pt–Pd@NPA), showing excellent hydrogen evolution reaction (HER) catalytic performance and durability over a wide pH range. The optimized Pt–Pd@NPA requires low overpotentials of −28.1, −34.8, and −23.8 mV to drive a catalytic current density of −10 mA cm −2 with small Tafel slopes of 31.2, 32.2, and 32.5 mV dec −1 in acidic (0.5 M H 2 SO 4 ), neutral (1.0 M PBS), and alkaline (1.0 M KOH) media, respectively, which outperforms most previously reported noble-metal-based HER electrocatalysts. Impressively, this hybrid catalyst is capable of steadily delivering a fairly large current density of 1000 mA cm −2 in highly acidic media (0.5–7.0 M H 2 SO 4 ), promising its practical use in advanced water-splitting devices. The superior HER performance is ascribed to the 3D interconnected nanoporous architectures and synergies between the Ag–Pd skeletons and active Pt. Theoretical calculations confirm that the electronic structure of the Ag–Pd hybrids is optimized by the incorporation of Pt, which results in optimal hydrogen adsorption free energy on the surface and leads to significantly enhanced HER activity and durability. Our work offers a new idea for the design and fabrication of advanced high-performance electrocatalysts for the HER over a wide range of pH values.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA04059A</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5714-5900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (29), p.14281-14290
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2075405550
source Royal Society Of Chemistry Journals 2008-
subjects Alloy systems
Catalysis
Catalysts
Chemical synthesis
Current density
Durability
Electrocatalysts
Electrochemical activation
Electrochemistry
Electronic structure
Fabrication
Free energy
Hybrids
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Hydrogen-based energy
Interfaces
Noble metals
Palladium
pH effects
Platinum
Renewable energy
Silver
Skin
Substrates
Sulfuric acid
Tafel slopes
title Engineering nanoporous Ag/Pd core/shell interfaces with ultrathin Pt doping for efficient hydrogen evolution reaction over a wide pH range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20nanoporous%20Ag/Pd%20core/shell%20interfaces%20with%20ultrathin%20Pt%20doping%20for%20efficient%20hydrogen%20evolution%20reaction%20over%20a%20wide%20pH%20range&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Yang,%20C.&rft.date=2018&rft.volume=6&rft.issue=29&rft.spage=14281&rft.epage=14290&rft.pages=14281-14290&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA04059A&rft_dat=%3Cproquest_cross%3E2075405550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075405550&rft_id=info:pmid/&rfr_iscdi=true