Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion
Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (29), p.14025-14042 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14042 |
---|---|
container_issue | 29 |
container_start_page | 14025 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Su, Jianwei Ge, Ruixiang Dong, Yan Hao, Fei Chen, Liang |
description | Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can overcome some limitations of bulk materials in electrocatalytic applications. In this review, we introduce SACs consisting of various single metal atoms, including noble and transition metals, anchored on various supports, such as metals, metal oxides, porous carbon, graphene, and g-C
3
N
4
. These catalysts possessed various binding modes between the single atoms and anchoring sites. We also review and highlight novel and promising methods to obtain SACs. Such methods include wet chemistry, metal etching, electrodeposition, and metal–organic-framework-derived methods. We also focused on the electrocatalytic applications of SACs in representative electrochemical applications such as oxygen reduction, hydrogen evolution, oxygen evolution, carbon dioxide reduction, and nitrogen reduction reactions. Significantly, the electrocatalytic performance can be tuned by engineering the structure of SACs in terms of binding mode, coordination number, and dispersion tendencies. Finally, we provide perspectives on the design of SACs for future applications in various electrocatalytic processes in energy conversion. |
doi_str_mv | 10.1039/C8TA04064H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075404675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075404675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-34087b890e0eb0967edc5e7de37a36e77d8e83ec7e515b3c917edb7840ce6cf33</originalsourceid><addsrcrecordid>eNpFkNFLwzAQxoMoOOZe_AsCvsmq1yVtUt_GUCcMBJnPJU1vs6NLay4T-t-bOdF7uYP73fdxH2PXKdylIIr7hV7PQUIul2dsNIMMEiWL_Pxv1vqSTYh2EEsD5EUxYv0bWnSB977beiTijePUuG2LiQndnmOLNvjOmmDagQI9cNs5i32Ychpc-EBqaMqNq7np-7aJXNO5HxXbonEcHfrtcDz6Qk9xd8UuNqYlnPz2MXt_elwvlsnq9fllMV8lVoIIiZCgVaULQMAKilxhbTNUNQplRI5K1Rq1QKswS7NK2CKNRKW0BIu53QgxZjcn3fjZ5wEplLvu4F20LGegMgkyV1mkbk-U9R2Rx03Z-2Zv_FCmUB5DLf9DFd9LhGtp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075404675</pqid></control><display><type>article</type><title>Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion</title><source>Royal Society Of Chemistry Journals</source><creator>Su, Jianwei ; Ge, Ruixiang ; Dong, Yan ; Hao, Fei ; Chen, Liang</creator><creatorcontrib>Su, Jianwei ; Ge, Ruixiang ; Dong, Yan ; Hao, Fei ; Chen, Liang</creatorcontrib><description>Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can overcome some limitations of bulk materials in electrocatalytic applications. In this review, we introduce SACs consisting of various single metal atoms, including noble and transition metals, anchored on various supports, such as metals, metal oxides, porous carbon, graphene, and g-C
3
N
4
. These catalysts possessed various binding modes between the single atoms and anchoring sites. We also review and highlight novel and promising methods to obtain SACs. Such methods include wet chemistry, metal etching, electrodeposition, and metal–organic-framework-derived methods. We also focused on the electrocatalytic applications of SACs in representative electrochemical applications such as oxygen reduction, hydrogen evolution, oxygen evolution, carbon dioxide reduction, and nitrogen reduction reactions. Significantly, the electrocatalytic performance can be tuned by engineering the structure of SACs in terms of binding mode, coordination number, and dispersion tendencies. Finally, we provide perspectives on the design of SACs for future applications in various electrocatalytic processes in energy conversion.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA04064H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anchoring ; Binding ; Carbon dioxide ; Carbon nitride ; Catalysis ; Catalysts ; Chemical evolution ; Chemical reduction ; Clean energy ; Coordination numbers ; Direct conversion ; Electrocatalysts ; Electrochemistry ; Energy ; Energy conversion ; Etching ; Hydrogen evolution ; Metals ; Organic chemistry ; Oxides ; Oxygen ; Single atom catalysts ; Transition metals</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (29), p.14025-14042</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-34087b890e0eb0967edc5e7de37a36e77d8e83ec7e515b3c917edb7840ce6cf33</citedby><cites>FETCH-LOGICAL-c403t-34087b890e0eb0967edc5e7de37a36e77d8e83ec7e515b3c917edb7840ce6cf33</cites><orcidid>0000-0002-0667-540X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Su, Jianwei</creatorcontrib><creatorcontrib>Ge, Ruixiang</creatorcontrib><creatorcontrib>Dong, Yan</creatorcontrib><creatorcontrib>Hao, Fei</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><title>Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can overcome some limitations of bulk materials in electrocatalytic applications. In this review, we introduce SACs consisting of various single metal atoms, including noble and transition metals, anchored on various supports, such as metals, metal oxides, porous carbon, graphene, and g-C
3
N
4
. These catalysts possessed various binding modes between the single atoms and anchoring sites. We also review and highlight novel and promising methods to obtain SACs. Such methods include wet chemistry, metal etching, electrodeposition, and metal–organic-framework-derived methods. We also focused on the electrocatalytic applications of SACs in representative electrochemical applications such as oxygen reduction, hydrogen evolution, oxygen evolution, carbon dioxide reduction, and nitrogen reduction reactions. Significantly, the electrocatalytic performance can be tuned by engineering the structure of SACs in terms of binding mode, coordination number, and dispersion tendencies. Finally, we provide perspectives on the design of SACs for future applications in various electrocatalytic processes in energy conversion.</description><subject>Anchoring</subject><subject>Binding</subject><subject>Carbon dioxide</subject><subject>Carbon nitride</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical evolution</subject><subject>Chemical reduction</subject><subject>Clean energy</subject><subject>Coordination numbers</subject><subject>Direct conversion</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Etching</subject><subject>Hydrogen evolution</subject><subject>Metals</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Single atom catalysts</subject><subject>Transition metals</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkNFLwzAQxoMoOOZe_AsCvsmq1yVtUt_GUCcMBJnPJU1vs6NLay4T-t-bOdF7uYP73fdxH2PXKdylIIr7hV7PQUIul2dsNIMMEiWL_Pxv1vqSTYh2EEsD5EUxYv0bWnSB977beiTijePUuG2LiQndnmOLNvjOmmDagQI9cNs5i32Ychpc-EBqaMqNq7np-7aJXNO5HxXbonEcHfrtcDz6Qk9xd8UuNqYlnPz2MXt_elwvlsnq9fllMV8lVoIIiZCgVaULQMAKilxhbTNUNQplRI5K1Rq1QKswS7NK2CKNRKW0BIu53QgxZjcn3fjZ5wEplLvu4F20LGegMgkyV1mkbk-U9R2Rx03Z-2Zv_FCmUB5DLf9DFd9LhGtp</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Su, Jianwei</creator><creator>Ge, Ruixiang</creator><creator>Dong, Yan</creator><creator>Hao, Fei</creator><creator>Chen, Liang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0667-540X</orcidid></search><sort><creationdate>2018</creationdate><title>Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion</title><author>Su, Jianwei ; Ge, Ruixiang ; Dong, Yan ; Hao, Fei ; Chen, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-34087b890e0eb0967edc5e7de37a36e77d8e83ec7e515b3c917edb7840ce6cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anchoring</topic><topic>Binding</topic><topic>Carbon dioxide</topic><topic>Carbon nitride</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical evolution</topic><topic>Chemical reduction</topic><topic>Clean energy</topic><topic>Coordination numbers</topic><topic>Direct conversion</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Etching</topic><topic>Hydrogen evolution</topic><topic>Metals</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Single atom catalysts</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Jianwei</creatorcontrib><creatorcontrib>Ge, Ruixiang</creatorcontrib><creatorcontrib>Dong, Yan</creatorcontrib><creatorcontrib>Hao, Fei</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Jianwei</au><au>Ge, Ruixiang</au><au>Dong, Yan</au><au>Hao, Fei</au><au>Chen, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>29</issue><spage>14025</spage><epage>14042</epage><pages>14025-14042</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can overcome some limitations of bulk materials in electrocatalytic applications. In this review, we introduce SACs consisting of various single metal atoms, including noble and transition metals, anchored on various supports, such as metals, metal oxides, porous carbon, graphene, and g-C
3
N
4
. These catalysts possessed various binding modes between the single atoms and anchoring sites. We also review and highlight novel and promising methods to obtain SACs. Such methods include wet chemistry, metal etching, electrodeposition, and metal–organic-framework-derived methods. We also focused on the electrocatalytic applications of SACs in representative electrochemical applications such as oxygen reduction, hydrogen evolution, oxygen evolution, carbon dioxide reduction, and nitrogen reduction reactions. Significantly, the electrocatalytic performance can be tuned by engineering the structure of SACs in terms of binding mode, coordination number, and dispersion tendencies. Finally, we provide perspectives on the design of SACs for future applications in various electrocatalytic processes in energy conversion.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA04064H</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0667-540X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (29), p.14025-14042 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2075404675 |
source | Royal Society Of Chemistry Journals |
subjects | Anchoring Binding Carbon dioxide Carbon nitride Catalysis Catalysts Chemical evolution Chemical reduction Clean energy Coordination numbers Direct conversion Electrocatalysts Electrochemistry Energy Energy conversion Etching Hydrogen evolution Metals Organic chemistry Oxides Oxygen Single atom catalysts Transition metals |
title | Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20progress%20in%20single-atom%20electrocatalysts:%20concept,%20synthesis,%20and%20applications%20in%20clean%20energy%20conversion&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Su,%20Jianwei&rft.date=2018&rft.volume=6&rft.issue=29&rft.spage=14025&rft.epage=14042&rft.pages=14025-14042&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA04064H&rft_dat=%3Cproquest_cross%3E2075404675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075404675&rft_id=info:pmid/&rfr_iscdi=true |