Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion

Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (29), p.14025-14042
Hauptverfasser: Su, Jianwei, Ge, Ruixiang, Dong, Yan, Hao, Fei, Chen, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14042
container_issue 29
container_start_page 14025
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Su, Jianwei
Ge, Ruixiang
Dong, Yan
Hao, Fei
Chen, Liang
description Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can overcome some limitations of bulk materials in electrocatalytic applications. In this review, we introduce SACs consisting of various single metal atoms, including noble and transition metals, anchored on various supports, such as metals, metal oxides, porous carbon, graphene, and g-C 3 N 4 . These catalysts possessed various binding modes between the single atoms and anchoring sites. We also review and highlight novel and promising methods to obtain SACs. Such methods include wet chemistry, metal etching, electrodeposition, and metal–organic-framework-derived methods. We also focused on the electrocatalytic applications of SACs in representative electrochemical applications such as oxygen reduction, hydrogen evolution, oxygen evolution, carbon dioxide reduction, and nitrogen reduction reactions. Significantly, the electrocatalytic performance can be tuned by engineering the structure of SACs in terms of binding mode, coordination number, and dispersion tendencies. Finally, we provide perspectives on the design of SACs for future applications in various electrocatalytic processes in energy conversion.
doi_str_mv 10.1039/C8TA04064H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075404675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075404675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-34087b890e0eb0967edc5e7de37a36e77d8e83ec7e515b3c917edb7840ce6cf33</originalsourceid><addsrcrecordid>eNpFkNFLwzAQxoMoOOZe_AsCvsmq1yVtUt_GUCcMBJnPJU1vs6NLay4T-t-bOdF7uYP73fdxH2PXKdylIIr7hV7PQUIul2dsNIMMEiWL_Pxv1vqSTYh2EEsD5EUxYv0bWnSB977beiTijePUuG2LiQndnmOLNvjOmmDagQI9cNs5i32Ychpc-EBqaMqNq7np-7aJXNO5HxXbonEcHfrtcDz6Qk9xd8UuNqYlnPz2MXt_elwvlsnq9fllMV8lVoIIiZCgVaULQMAKilxhbTNUNQplRI5K1Rq1QKswS7NK2CKNRKW0BIu53QgxZjcn3fjZ5wEplLvu4F20LGegMgkyV1mkbk-U9R2Rx03Z-2Zv_FCmUB5DLf9DFd9LhGtp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075404675</pqid></control><display><type>article</type><title>Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion</title><source>Royal Society Of Chemistry Journals</source><creator>Su, Jianwei ; Ge, Ruixiang ; Dong, Yan ; Hao, Fei ; Chen, Liang</creator><creatorcontrib>Su, Jianwei ; Ge, Ruixiang ; Dong, Yan ; Hao, Fei ; Chen, Liang</creatorcontrib><description>Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can overcome some limitations of bulk materials in electrocatalytic applications. In this review, we introduce SACs consisting of various single metal atoms, including noble and transition metals, anchored on various supports, such as metals, metal oxides, porous carbon, graphene, and g-C 3 N 4 . These catalysts possessed various binding modes between the single atoms and anchoring sites. We also review and highlight novel and promising methods to obtain SACs. Such methods include wet chemistry, metal etching, electrodeposition, and metal–organic-framework-derived methods. We also focused on the electrocatalytic applications of SACs in representative electrochemical applications such as oxygen reduction, hydrogen evolution, oxygen evolution, carbon dioxide reduction, and nitrogen reduction reactions. Significantly, the electrocatalytic performance can be tuned by engineering the structure of SACs in terms of binding mode, coordination number, and dispersion tendencies. Finally, we provide perspectives on the design of SACs for future applications in various electrocatalytic processes in energy conversion.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA04064H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anchoring ; Binding ; Carbon dioxide ; Carbon nitride ; Catalysis ; Catalysts ; Chemical evolution ; Chemical reduction ; Clean energy ; Coordination numbers ; Direct conversion ; Electrocatalysts ; Electrochemistry ; Energy ; Energy conversion ; Etching ; Hydrogen evolution ; Metals ; Organic chemistry ; Oxides ; Oxygen ; Single atom catalysts ; Transition metals</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (29), p.14025-14042</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-34087b890e0eb0967edc5e7de37a36e77d8e83ec7e515b3c917edb7840ce6cf33</citedby><cites>FETCH-LOGICAL-c403t-34087b890e0eb0967edc5e7de37a36e77d8e83ec7e515b3c917edb7840ce6cf33</cites><orcidid>0000-0002-0667-540X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Su, Jianwei</creatorcontrib><creatorcontrib>Ge, Ruixiang</creatorcontrib><creatorcontrib>Dong, Yan</creatorcontrib><creatorcontrib>Hao, Fei</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><title>Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can overcome some limitations of bulk materials in electrocatalytic applications. In this review, we introduce SACs consisting of various single metal atoms, including noble and transition metals, anchored on various supports, such as metals, metal oxides, porous carbon, graphene, and g-C 3 N 4 . These catalysts possessed various binding modes between the single atoms and anchoring sites. We also review and highlight novel and promising methods to obtain SACs. Such methods include wet chemistry, metal etching, electrodeposition, and metal–organic-framework-derived methods. We also focused on the electrocatalytic applications of SACs in representative electrochemical applications such as oxygen reduction, hydrogen evolution, oxygen evolution, carbon dioxide reduction, and nitrogen reduction reactions. Significantly, the electrocatalytic performance can be tuned by engineering the structure of SACs in terms of binding mode, coordination number, and dispersion tendencies. Finally, we provide perspectives on the design of SACs for future applications in various electrocatalytic processes in energy conversion.</description><subject>Anchoring</subject><subject>Binding</subject><subject>Carbon dioxide</subject><subject>Carbon nitride</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical evolution</subject><subject>Chemical reduction</subject><subject>Clean energy</subject><subject>Coordination numbers</subject><subject>Direct conversion</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Etching</subject><subject>Hydrogen evolution</subject><subject>Metals</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Single atom catalysts</subject><subject>Transition metals</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkNFLwzAQxoMoOOZe_AsCvsmq1yVtUt_GUCcMBJnPJU1vs6NLay4T-t-bOdF7uYP73fdxH2PXKdylIIr7hV7PQUIul2dsNIMMEiWL_Pxv1vqSTYh2EEsD5EUxYv0bWnSB977beiTijePUuG2LiQndnmOLNvjOmmDagQI9cNs5i32Ychpc-EBqaMqNq7np-7aJXNO5HxXbonEcHfrtcDz6Qk9xd8UuNqYlnPz2MXt_elwvlsnq9fllMV8lVoIIiZCgVaULQMAKilxhbTNUNQplRI5K1Rq1QKswS7NK2CKNRKW0BIu53QgxZjcn3fjZ5wEplLvu4F20LGegMgkyV1mkbk-U9R2Rx03Z-2Zv_FCmUB5DLf9DFd9LhGtp</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Su, Jianwei</creator><creator>Ge, Ruixiang</creator><creator>Dong, Yan</creator><creator>Hao, Fei</creator><creator>Chen, Liang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0667-540X</orcidid></search><sort><creationdate>2018</creationdate><title>Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion</title><author>Su, Jianwei ; Ge, Ruixiang ; Dong, Yan ; Hao, Fei ; Chen, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-34087b890e0eb0967edc5e7de37a36e77d8e83ec7e515b3c917edb7840ce6cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anchoring</topic><topic>Binding</topic><topic>Carbon dioxide</topic><topic>Carbon nitride</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical evolution</topic><topic>Chemical reduction</topic><topic>Clean energy</topic><topic>Coordination numbers</topic><topic>Direct conversion</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Etching</topic><topic>Hydrogen evolution</topic><topic>Metals</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Single atom catalysts</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Jianwei</creatorcontrib><creatorcontrib>Ge, Ruixiang</creatorcontrib><creatorcontrib>Dong, Yan</creatorcontrib><creatorcontrib>Hao, Fei</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Jianwei</au><au>Ge, Ruixiang</au><au>Dong, Yan</au><au>Hao, Fei</au><au>Chen, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>29</issue><spage>14025</spage><epage>14042</epage><pages>14025-14042</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Electrochemical energy plays a key role in direct conversion into value-added products by using renewable electricity. Single-atom catalysts (SACs) can maximize the efficiency of metal-atom utilization, thus achieving high activity, stability, and selectivity in electrocatalytic reactions. SACs can overcome some limitations of bulk materials in electrocatalytic applications. In this review, we introduce SACs consisting of various single metal atoms, including noble and transition metals, anchored on various supports, such as metals, metal oxides, porous carbon, graphene, and g-C 3 N 4 . These catalysts possessed various binding modes between the single atoms and anchoring sites. We also review and highlight novel and promising methods to obtain SACs. Such methods include wet chemistry, metal etching, electrodeposition, and metal–organic-framework-derived methods. We also focused on the electrocatalytic applications of SACs in representative electrochemical applications such as oxygen reduction, hydrogen evolution, oxygen evolution, carbon dioxide reduction, and nitrogen reduction reactions. Significantly, the electrocatalytic performance can be tuned by engineering the structure of SACs in terms of binding mode, coordination number, and dispersion tendencies. Finally, we provide perspectives on the design of SACs for future applications in various electrocatalytic processes in energy conversion.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA04064H</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0667-540X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (29), p.14025-14042
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2075404675
source Royal Society Of Chemistry Journals
subjects Anchoring
Binding
Carbon dioxide
Carbon nitride
Catalysis
Catalysts
Chemical evolution
Chemical reduction
Clean energy
Coordination numbers
Direct conversion
Electrocatalysts
Electrochemistry
Energy
Energy conversion
Etching
Hydrogen evolution
Metals
Organic chemistry
Oxides
Oxygen
Single atom catalysts
Transition metals
title Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20progress%20in%20single-atom%20electrocatalysts:%20concept,%20synthesis,%20and%20applications%20in%20clean%20energy%20conversion&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Su,%20Jianwei&rft.date=2018&rft.volume=6&rft.issue=29&rft.spage=14025&rft.epage=14042&rft.pages=14025-14042&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA04064H&rft_dat=%3Cproquest_cross%3E2075404675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075404675&rft_id=info:pmid/&rfr_iscdi=true