Singular behavior of the leading Lyapunov exponent of a product of random \(2 \times 2\) matrices

We consider a certain infinite product of random \(2 \times 2\) matrices appearing in the solution of some \(1\) and \(1+1\) dimensional disordered models in statistical mechanics, which depends on a parameter \(\varepsilon>0\) and on a real random variable with distribution \(\mu\). For a large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-12
Hauptverfasser: Genovese, Giuseppe, Giacomin, Giambattista, Rafael Leon Greenblatt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Genovese, Giuseppe
Giacomin, Giambattista
Rafael Leon Greenblatt
description We consider a certain infinite product of random \(2 \times 2\) matrices appearing in the solution of some \(1\) and \(1+1\) dimensional disordered models in statistical mechanics, which depends on a parameter \(\varepsilon>0\) and on a real random variable with distribution \(\mu\). For a large class of \(\mu\), we prove the prediction by B. Derrida and H. J. Hilhorst (J. Phys. A 16:2641, 1983) that the Lyapunov exponent behaves like \(C \varepsilon^{2 \alpha}\) in the limit \(\varepsilon \searrow 0\), where \(\alpha \in (0,1)\) and \(C>0\) are determined by \(\mu\). Derrida and Hilhorst performed a two-scale analysis of the integral equation for the invariant distribution of the Markov chain associated to the matrix product and obtained a probability measure that is expected to be close to the invariant one for small \(\varepsilon\). We introduce suitable norms and exploit contractivity properties to show that such a probability measure is indeed close to the invariant one in a sense which implies a suitable control of the Lyapunov exponent.
doi_str_mv 10.48550/arxiv.1602.03633
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075333063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075333063</sourcerecordid><originalsourceid>FETCH-proquest_journals_20753330633</originalsourceid><addsrcrecordid>eNqNjs1Kw0AUhQdBaNE-gLsLbuqi8eZOJ-2-VFy402WgXJvbdkoyk85PqG9vFB_A1eHwfRyOUg8lFsu1MfjM4WqHoqyQCtSV1jdqSlqXi_WSaKJmMZ4RkaoVGaOnit-tO-aWA3zKiQfrA_gDpJNAK9yMDN6-uM_ODyDX3jtx6Udg6INv8v63BHaN76CeE9TJdhKB6ifoOAW7l3ivbg_cRpn95Z16fNl-bF4X48IlS0y7s8_BjWhHuDJaaxxf_8_6BmskSk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075333063</pqid></control><display><type>article</type><title>Singular behavior of the leading Lyapunov exponent of a product of random \(2 \times 2\) matrices</title><source>Free E- Journals</source><creator>Genovese, Giuseppe ; Giacomin, Giambattista ; Rafael Leon Greenblatt</creator><creatorcontrib>Genovese, Giuseppe ; Giacomin, Giambattista ; Rafael Leon Greenblatt</creatorcontrib><description>We consider a certain infinite product of random \(2 \times 2\) matrices appearing in the solution of some \(1\) and \(1+1\) dimensional disordered models in statistical mechanics, which depends on a parameter \(\varepsilon&gt;0\) and on a real random variable with distribution \(\mu\). For a large class of \(\mu\), we prove the prediction by B. Derrida and H. J. Hilhorst (J. Phys. A 16:2641, 1983) that the Lyapunov exponent behaves like \(C \varepsilon^{2 \alpha}\) in the limit \(\varepsilon \searrow 0\), where \(\alpha \in (0,1)\) and \(C&gt;0\) are determined by \(\mu\). Derrida and Hilhorst performed a two-scale analysis of the integral equation for the invariant distribution of the Markov chain associated to the matrix product and obtained a probability measure that is expected to be close to the invariant one for small \(\varepsilon\). We introduce suitable norms and exploit contractivity properties to show that such a probability measure is indeed close to the invariant one in a sense which implies a suitable control of the Lyapunov exponent.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1602.03633</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Integral equations ; Invariants ; Liapunov exponents ; Markov chains ; Norms ; Random variables ; Statistical analysis ; Statistical mechanics</subject><ispartof>arXiv.org, 2016-12</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781,27906</link.rule.ids></links><search><creatorcontrib>Genovese, Giuseppe</creatorcontrib><creatorcontrib>Giacomin, Giambattista</creatorcontrib><creatorcontrib>Rafael Leon Greenblatt</creatorcontrib><title>Singular behavior of the leading Lyapunov exponent of a product of random \(2 \times 2\) matrices</title><title>arXiv.org</title><description>We consider a certain infinite product of random \(2 \times 2\) matrices appearing in the solution of some \(1\) and \(1+1\) dimensional disordered models in statistical mechanics, which depends on a parameter \(\varepsilon&gt;0\) and on a real random variable with distribution \(\mu\). For a large class of \(\mu\), we prove the prediction by B. Derrida and H. J. Hilhorst (J. Phys. A 16:2641, 1983) that the Lyapunov exponent behaves like \(C \varepsilon^{2 \alpha}\) in the limit \(\varepsilon \searrow 0\), where \(\alpha \in (0,1)\) and \(C&gt;0\) are determined by \(\mu\). Derrida and Hilhorst performed a two-scale analysis of the integral equation for the invariant distribution of the Markov chain associated to the matrix product and obtained a probability measure that is expected to be close to the invariant one for small \(\varepsilon\). We introduce suitable norms and exploit contractivity properties to show that such a probability measure is indeed close to the invariant one in a sense which implies a suitable control of the Lyapunov exponent.</description><subject>Integral equations</subject><subject>Invariants</subject><subject>Liapunov exponents</subject><subject>Markov chains</subject><subject>Norms</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Statistical mechanics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs1Kw0AUhQdBaNE-gLsLbuqi8eZOJ-2-VFy402WgXJvbdkoyk85PqG9vFB_A1eHwfRyOUg8lFsu1MfjM4WqHoqyQCtSV1jdqSlqXi_WSaKJmMZ4RkaoVGaOnit-tO-aWA3zKiQfrA_gDpJNAK9yMDN6-uM_ODyDX3jtx6Udg6INv8v63BHaN76CeE9TJdhKB6ifoOAW7l3ivbg_cRpn95Z16fNl-bF4X48IlS0y7s8_BjWhHuDJaaxxf_8_6BmskSk8</recordid><startdate>20161207</startdate><enddate>20161207</enddate><creator>Genovese, Giuseppe</creator><creator>Giacomin, Giambattista</creator><creator>Rafael Leon Greenblatt</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161207</creationdate><title>Singular behavior of the leading Lyapunov exponent of a product of random \(2 \times 2\) matrices</title><author>Genovese, Giuseppe ; Giacomin, Giambattista ; Rafael Leon Greenblatt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20753330633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Integral equations</topic><topic>Invariants</topic><topic>Liapunov exponents</topic><topic>Markov chains</topic><topic>Norms</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Statistical mechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>Genovese, Giuseppe</creatorcontrib><creatorcontrib>Giacomin, Giambattista</creatorcontrib><creatorcontrib>Rafael Leon Greenblatt</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Genovese, Giuseppe</au><au>Giacomin, Giambattista</au><au>Rafael Leon Greenblatt</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Singular behavior of the leading Lyapunov exponent of a product of random \(2 \times 2\) matrices</atitle><jtitle>arXiv.org</jtitle><date>2016-12-07</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We consider a certain infinite product of random \(2 \times 2\) matrices appearing in the solution of some \(1\) and \(1+1\) dimensional disordered models in statistical mechanics, which depends on a parameter \(\varepsilon&gt;0\) and on a real random variable with distribution \(\mu\). For a large class of \(\mu\), we prove the prediction by B. Derrida and H. J. Hilhorst (J. Phys. A 16:2641, 1983) that the Lyapunov exponent behaves like \(C \varepsilon^{2 \alpha}\) in the limit \(\varepsilon \searrow 0\), where \(\alpha \in (0,1)\) and \(C&gt;0\) are determined by \(\mu\). Derrida and Hilhorst performed a two-scale analysis of the integral equation for the invariant distribution of the Markov chain associated to the matrix product and obtained a probability measure that is expected to be close to the invariant one for small \(\varepsilon\). We introduce suitable norms and exploit contractivity properties to show that such a probability measure is indeed close to the invariant one in a sense which implies a suitable control of the Lyapunov exponent.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1602.03633</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075333063
source Free E- Journals
subjects Integral equations
Invariants
Liapunov exponents
Markov chains
Norms
Random variables
Statistical analysis
Statistical mechanics
title Singular behavior of the leading Lyapunov exponent of a product of random \(2 \times 2\) matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Singular%20behavior%20of%20the%20leading%20Lyapunov%20exponent%20of%20a%20product%20of%20random%20%5C(2%20%5Ctimes%202%5C)%20matrices&rft.jtitle=arXiv.org&rft.au=Genovese,%20Giuseppe&rft.date=2016-12-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1602.03633&rft_dat=%3Cproquest%3E2075333063%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075333063&rft_id=info:pmid/&rfr_iscdi=true