Distribution results on polynomials with bounded roots

For \(d \in \mathbb{N}\) the well-known Schur-Cohn region \(\mathcal{E}_d\) consists of all \(d\)-dimensional vectors \((a_1,\ldots,a_d)\in\mathbb{R}^d\) corresponding to monic polynomials \(X^d+a_1X^{d-1}+\cdots+a_{d-1}X+a_d\) whose roots all lie in the open unit disk. This region has been extensiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-04
Hauptverfasser: Kirschenhofer, Peter, Thuswaldner, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kirschenhofer, Peter
Thuswaldner, Jörg
description For \(d \in \mathbb{N}\) the well-known Schur-Cohn region \(\mathcal{E}_d\) consists of all \(d\)-dimensional vectors \((a_1,\ldots,a_d)\in\mathbb{R}^d\) corresponding to monic polynomials \(X^d+a_1X^{d-1}+\cdots+a_{d-1}X+a_d\) whose roots all lie in the open unit disk. This region has been extensively studied over decades. Recently, Akiyama and Pethő considered the subsets \(\mathcal{E}_d^{(s)}\) of the Schur-Cohn region that correspond to polynomials of degree \(d\) with exactly \(s\) pairs of nonreal roots. They were especially interested in the \(d\)-dimensional Lebesgue measures \(v_d^{(s)}:=\lambda_d(\mathcal{E}_d^{(s)})\) of these sets and their arithmetic properties, and gave some fundamental results. Moreover, they posed two conjectures that we prove in the present paper. Namely, we show that in the totally complex case \(d=2s\) the formula \[ \frac{v_{2s}^{(s)}}{v_{2s}^{(0)}} = 2^{2s(s-1)}\binom {2s}s \] holds for all \(s\in\mathbb{N}\) and in the general case the quotient \(v_d^{(s)}/v_d^{(0)}\) is an integer for all choices \(d\in \mathbb{N}\) and \(s\le d/2\). We even go beyond that and prove explicit formul\ae{} for \(v_d^{(s)} / v_d^{(0)}\) for arbitrary \(d\in \mathbb{N}\), \(s\le d/2\). The ingredients of our proofs comprise Selberg type integrals, determinants like the Cauchy double alternant, and partial Hilbert matrices.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075328169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075328169</sourcerecordid><originalsourceid>FETCH-proquest_journals_20753281693</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgupC8mrWs_eAD3xdKIKTGv5r0g3t4uPICrGZhZiAK0rqt2B7ASJdGolALbgDG6EPboiZPvM3uMMjnKgUnOOmH4RHz6WyD59vyQPeY4uEEmRKaNWN7n4sof12J7Pl0Pl2pK-MqOuBsxpzinDlRjNLS13ev_ri9C1zZL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075328169</pqid></control><display><type>article</type><title>Distribution results on polynomials with bounded roots</title><source>Free E- Journals</source><creator>Kirschenhofer, Peter ; Thuswaldner, Jörg</creator><creatorcontrib>Kirschenhofer, Peter ; Thuswaldner, Jörg</creatorcontrib><description>For \(d \in \mathbb{N}\) the well-known Schur-Cohn region \(\mathcal{E}_d\) consists of all \(d\)-dimensional vectors \((a_1,\ldots,a_d)\in\mathbb{R}^d\) corresponding to monic polynomials \(X^d+a_1X^{d-1}+\cdots+a_{d-1}X+a_d\) whose roots all lie in the open unit disk. This region has been extensively studied over decades. Recently, Akiyama and Pethő considered the subsets \(\mathcal{E}_d^{(s)}\) of the Schur-Cohn region that correspond to polynomials of degree \(d\) with exactly \(s\) pairs of nonreal roots. They were especially interested in the \(d\)-dimensional Lebesgue measures \(v_d^{(s)}:=\lambda_d(\mathcal{E}_d^{(s)})\) of these sets and their arithmetic properties, and gave some fundamental results. Moreover, they posed two conjectures that we prove in the present paper. Namely, we show that in the totally complex case \(d=2s\) the formula \[ \frac{v_{2s}^{(s)}}{v_{2s}^{(0)}} = 2^{2s(s-1)}\binom {2s}s \] holds for all \(s\in\mathbb{N}\) and in the general case the quotient \(v_d^{(s)}/v_d^{(0)}\) is an integer for all choices \(d\in \mathbb{N}\) and \(s\le d/2\). We even go beyond that and prove explicit formul\ae{} for \(v_d^{(s)} / v_d^{(0)}\) for arbitrary \(d\in \mathbb{N}\), \(s\le d/2\). The ingredients of our proofs comprise Selberg type integrals, determinants like the Cauchy double alternant, and partial Hilbert matrices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Polynomials ; Roots</subject><ispartof>arXiv.org, 2017-04</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kirschenhofer, Peter</creatorcontrib><creatorcontrib>Thuswaldner, Jörg</creatorcontrib><title>Distribution results on polynomials with bounded roots</title><title>arXiv.org</title><description>For \(d \in \mathbb{N}\) the well-known Schur-Cohn region \(\mathcal{E}_d\) consists of all \(d\)-dimensional vectors \((a_1,\ldots,a_d)\in\mathbb{R}^d\) corresponding to monic polynomials \(X^d+a_1X^{d-1}+\cdots+a_{d-1}X+a_d\) whose roots all lie in the open unit disk. This region has been extensively studied over decades. Recently, Akiyama and Pethő considered the subsets \(\mathcal{E}_d^{(s)}\) of the Schur-Cohn region that correspond to polynomials of degree \(d\) with exactly \(s\) pairs of nonreal roots. They were especially interested in the \(d\)-dimensional Lebesgue measures \(v_d^{(s)}:=\lambda_d(\mathcal{E}_d^{(s)})\) of these sets and their arithmetic properties, and gave some fundamental results. Moreover, they posed two conjectures that we prove in the present paper. Namely, we show that in the totally complex case \(d=2s\) the formula \[ \frac{v_{2s}^{(s)}}{v_{2s}^{(0)}} = 2^{2s(s-1)}\binom {2s}s \] holds for all \(s\in\mathbb{N}\) and in the general case the quotient \(v_d^{(s)}/v_d^{(0)}\) is an integer for all choices \(d\in \mathbb{N}\) and \(s\le d/2\). We even go beyond that and prove explicit formul\ae{} for \(v_d^{(s)} / v_d^{(0)}\) for arbitrary \(d\in \mathbb{N}\), \(s\le d/2\). The ingredients of our proofs comprise Selberg type integrals, determinants like the Cauchy double alternant, and partial Hilbert matrices.</description><subject>Polynomials</subject><subject>Roots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgupC8mrWs_eAD3xdKIKTGv5r0g3t4uPICrGZhZiAK0rqt2B7ASJdGolALbgDG6EPboiZPvM3uMMjnKgUnOOmH4RHz6WyD59vyQPeY4uEEmRKaNWN7n4sof12J7Pl0Pl2pK-MqOuBsxpzinDlRjNLS13ev_ri9C1zZL</recordid><startdate>20170421</startdate><enddate>20170421</enddate><creator>Kirschenhofer, Peter</creator><creator>Thuswaldner, Jörg</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170421</creationdate><title>Distribution results on polynomials with bounded roots</title><author>Kirschenhofer, Peter ; Thuswaldner, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20753281693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Polynomials</topic><topic>Roots</topic><toplevel>online_resources</toplevel><creatorcontrib>Kirschenhofer, Peter</creatorcontrib><creatorcontrib>Thuswaldner, Jörg</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirschenhofer, Peter</au><au>Thuswaldner, Jörg</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Distribution results on polynomials with bounded roots</atitle><jtitle>arXiv.org</jtitle><date>2017-04-21</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>For \(d \in \mathbb{N}\) the well-known Schur-Cohn region \(\mathcal{E}_d\) consists of all \(d\)-dimensional vectors \((a_1,\ldots,a_d)\in\mathbb{R}^d\) corresponding to monic polynomials \(X^d+a_1X^{d-1}+\cdots+a_{d-1}X+a_d\) whose roots all lie in the open unit disk. This region has been extensively studied over decades. Recently, Akiyama and Pethő considered the subsets \(\mathcal{E}_d^{(s)}\) of the Schur-Cohn region that correspond to polynomials of degree \(d\) with exactly \(s\) pairs of nonreal roots. They were especially interested in the \(d\)-dimensional Lebesgue measures \(v_d^{(s)}:=\lambda_d(\mathcal{E}_d^{(s)})\) of these sets and their arithmetic properties, and gave some fundamental results. Moreover, they posed two conjectures that we prove in the present paper. Namely, we show that in the totally complex case \(d=2s\) the formula \[ \frac{v_{2s}^{(s)}}{v_{2s}^{(0)}} = 2^{2s(s-1)}\binom {2s}s \] holds for all \(s\in\mathbb{N}\) and in the general case the quotient \(v_d^{(s)}/v_d^{(0)}\) is an integer for all choices \(d\in \mathbb{N}\) and \(s\le d/2\). We even go beyond that and prove explicit formul\ae{} for \(v_d^{(s)} / v_d^{(0)}\) for arbitrary \(d\in \mathbb{N}\), \(s\le d/2\). The ingredients of our proofs comprise Selberg type integrals, determinants like the Cauchy double alternant, and partial Hilbert matrices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075328169
source Free E- Journals
subjects Polynomials
Roots
title Distribution results on polynomials with bounded roots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Distribution%20results%20on%20polynomials%20with%20bounded%20roots&rft.jtitle=arXiv.org&rft.au=Kirschenhofer,%20Peter&rft.date=2017-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075328169%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075328169&rft_id=info:pmid/&rfr_iscdi=true