Modeling the spread of the Zika virus using topological data analysis
Zika virus (ZIKV), a disease spread primarily through the Aedes aegypti mosquito, was identified in Brazil in 2015 and was declared a global health emergency by the World Health Organization (WHO). Epidemiologists often use common state-level attributes such as population density and temperature to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lo, Derek Park, Briton |
description | Zika virus (ZIKV), a disease spread primarily through the Aedes aegypti mosquito, was identified in Brazil in 2015 and was declared a global health emergency by the World Health Organization (WHO). Epidemiologists often use common state-level attributes such as population density and temperature to determine the spread of disease. By applying techniques from topological data analysis, we believe that epidemiologists will be able to better predict how ZIKV will spread. We use the Vietoris-Rips filtration on high-density mosquito locations in Brazil to create simplicial complexes, from which we extract homology group generators. Previously epidemiologists have not relied on topological data analysis to model disease spread. Evaluating our model on ZIKV case data in the states of Brazil demonstrates the value of these techniques for the improved assessment of vector-borne diseases. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075317456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075317456</sourcerecordid><originalsourceid>FETCH-proquest_journals_20753174563</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOxw4F2LStO5ScXFzcimHTWtq6NVcI_j2SvEBnH5--BYiUVrvsn2u1EqkzL2UUhWlMkYnojpTY70bOpjuFngMFhugdr6reyC8XIgMkWdCI3nq3A09NDgh4ID-zY43YtmiZ5v-uhbbY3U5nLIx0DNanuqeYvhirpUsjd6VuSn0f-oDcZQ66A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075317456</pqid></control><display><type>article</type><title>Modeling the spread of the Zika virus using topological data analysis</title><source>Free E- Journals</source><creator>Lo, Derek ; Park, Briton</creator><creatorcontrib>Lo, Derek ; Park, Briton</creatorcontrib><description>Zika virus (ZIKV), a disease spread primarily through the Aedes aegypti mosquito, was identified in Brazil in 2015 and was declared a global health emergency by the World Health Organization (WHO). Epidemiologists often use common state-level attributes such as population density and temperature to determine the spread of disease. By applying techniques from topological data analysis, we believe that epidemiologists will be able to better predict how ZIKV will spread. We use the Vietoris-Rips filtration on high-density mosquito locations in Brazil to create simplicial complexes, from which we extract homology group generators. Previously epidemiologists have not relied on topological data analysis to model disease spread. Evaluating our model on ZIKV case data in the states of Brazil demonstrates the value of these techniques for the improved assessment of vector-borne diseases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data analysis ; Disease ; Epidemiology ; Homology ; Population density ; Topology ; Viruses ; Zika virus</subject><ispartof>arXiv.org, 2017-01</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lo, Derek</creatorcontrib><creatorcontrib>Park, Briton</creatorcontrib><title>Modeling the spread of the Zika virus using topological data analysis</title><title>arXiv.org</title><description>Zika virus (ZIKV), a disease spread primarily through the Aedes aegypti mosquito, was identified in Brazil in 2015 and was declared a global health emergency by the World Health Organization (WHO). Epidemiologists often use common state-level attributes such as population density and temperature to determine the spread of disease. By applying techniques from topological data analysis, we believe that epidemiologists will be able to better predict how ZIKV will spread. We use the Vietoris-Rips filtration on high-density mosquito locations in Brazil to create simplicial complexes, from which we extract homology group generators. Previously epidemiologists have not relied on topological data analysis to model disease spread. Evaluating our model on ZIKV case data in the states of Brazil demonstrates the value of these techniques for the improved assessment of vector-borne diseases.</description><subject>Data analysis</subject><subject>Disease</subject><subject>Epidemiology</subject><subject>Homology</subject><subject>Population density</subject><subject>Topology</subject><subject>Viruses</subject><subject>Zika virus</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOxw4F2LStO5ScXFzcimHTWtq6NVcI_j2SvEBnH5--BYiUVrvsn2u1EqkzL2UUhWlMkYnojpTY70bOpjuFngMFhugdr6reyC8XIgMkWdCI3nq3A09NDgh4ID-zY43YtmiZ5v-uhbbY3U5nLIx0DNanuqeYvhirpUsjd6VuSn0f-oDcZQ66A</recordid><startdate>20170125</startdate><enddate>20170125</enddate><creator>Lo, Derek</creator><creator>Park, Briton</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170125</creationdate><title>Modeling the spread of the Zika virus using topological data analysis</title><author>Lo, Derek ; Park, Briton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20753174563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data analysis</topic><topic>Disease</topic><topic>Epidemiology</topic><topic>Homology</topic><topic>Population density</topic><topic>Topology</topic><topic>Viruses</topic><topic>Zika virus</topic><toplevel>online_resources</toplevel><creatorcontrib>Lo, Derek</creatorcontrib><creatorcontrib>Park, Briton</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, Derek</au><au>Park, Briton</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modeling the spread of the Zika virus using topological data analysis</atitle><jtitle>arXiv.org</jtitle><date>2017-01-25</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Zika virus (ZIKV), a disease spread primarily through the Aedes aegypti mosquito, was identified in Brazil in 2015 and was declared a global health emergency by the World Health Organization (WHO). Epidemiologists often use common state-level attributes such as population density and temperature to determine the spread of disease. By applying techniques from topological data analysis, we believe that epidemiologists will be able to better predict how ZIKV will spread. We use the Vietoris-Rips filtration on high-density mosquito locations in Brazil to create simplicial complexes, from which we extract homology group generators. Previously epidemiologists have not relied on topological data analysis to model disease spread. Evaluating our model on ZIKV case data in the states of Brazil demonstrates the value of these techniques for the improved assessment of vector-borne diseases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075317456 |
source | Free E- Journals |
subjects | Data analysis Disease Epidemiology Homology Population density Topology Viruses Zika virus |
title | Modeling the spread of the Zika virus using topological data analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modeling%20the%20spread%20of%20the%20Zika%20virus%20using%20topological%20data%20analysis&rft.jtitle=arXiv.org&rft.au=Lo,%20Derek&rft.date=2017-01-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075317456%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075317456&rft_id=info:pmid/&rfr_iscdi=true |