Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos

Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-03
Hauptverfasser: Betancourt, Alejandro, Díaz-Rodríguez, Natalia, Barakova, Emilia, Marcenaro, Lucio, Rauterberg, Matthias, Regazzoni, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Betancourt, Alejandro
Díaz-Rodríguez, Natalia
Barakova, Emilia
Marcenaro, Lucio
Rauterberg, Matthias
Regazzoni, Carlo
description Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075311738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075311738</sourcerecordid><originalsourceid>FETCH-proquest_journals_20753117383</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoWdMv0XYyCHrNXGe5qE7uz3a3vT6gP6OnAOWfFIiFllpQHITYsJhrTNBXHQuS5jNitQQozuLch0LxBDY68Qm1w4LbnV9spbyzyRfHLNIWnwa-oHgoHIG6Q14PtAL0zHb8bDZZ2bN2riSD-ccv2p_pWnZPZ2VcA8u1og8MltSItcpllhSzlf9cHyTVA2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075311738</pqid></control><display><type>article</type><title>Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos</title><source>Free E- Journals</source><creator>Betancourt, Alejandro ; Díaz-Rodríguez, Natalia ; Barakova, Emilia ; Marcenaro, Lucio ; Rauterberg, Matthias ; Regazzoni, Carlo</creator><creatorcontrib>Betancourt, Alejandro ; Díaz-Rodríguez, Natalia ; Barakova, Emilia ; Marcenaro, Lucio ; Rauterberg, Matthias ; Regazzoni, Carlo</creatorcontrib><description>Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cameras ; Light ; Machine learning ; Manifolds (mathematics) ; Wearable technology</subject><ispartof>arXiv.org, 2017-03</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Betancourt, Alejandro</creatorcontrib><creatorcontrib>Díaz-Rodríguez, Natalia</creatorcontrib><creatorcontrib>Barakova, Emilia</creatorcontrib><creatorcontrib>Marcenaro, Lucio</creatorcontrib><creatorcontrib>Rauterberg, Matthias</creatorcontrib><creatorcontrib>Regazzoni, Carlo</creatorcontrib><title>Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos</title><title>arXiv.org</title><description>Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Light</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Wearable technology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoWdMv0XYyCHrNXGe5qE7uz3a3vT6gP6OnAOWfFIiFllpQHITYsJhrTNBXHQuS5jNitQQozuLch0LxBDY68Qm1w4LbnV9spbyzyRfHLNIWnwa-oHgoHIG6Q14PtAL0zHb8bDZZ2bN2riSD-ccv2p_pWnZPZ2VcA8u1og8MltSItcpllhSzlf9cHyTVA2Q</recordid><startdate>20170327</startdate><enddate>20170327</enddate><creator>Betancourt, Alejandro</creator><creator>Díaz-Rodríguez, Natalia</creator><creator>Barakova, Emilia</creator><creator>Marcenaro, Lucio</creator><creator>Rauterberg, Matthias</creator><creator>Regazzoni, Carlo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170327</creationdate><title>Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos</title><author>Betancourt, Alejandro ; Díaz-Rodríguez, Natalia ; Barakova, Emilia ; Marcenaro, Lucio ; Rauterberg, Matthias ; Regazzoni, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20753117383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Light</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Wearable technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Betancourt, Alejandro</creatorcontrib><creatorcontrib>Díaz-Rodríguez, Natalia</creatorcontrib><creatorcontrib>Barakova, Emilia</creatorcontrib><creatorcontrib>Marcenaro, Lucio</creatorcontrib><creatorcontrib>Rauterberg, Matthias</creatorcontrib><creatorcontrib>Regazzoni, Carlo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betancourt, Alejandro</au><au>Díaz-Rodríguez, Natalia</au><au>Barakova, Emilia</au><au>Marcenaro, Lucio</au><au>Rauterberg, Matthias</au><au>Regazzoni, Carlo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos</atitle><jtitle>arXiv.org</jtitle><date>2017-03-27</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075311738
source Free E- Journals
subjects Algorithms
Cameras
Light
Machine learning
Manifolds (mathematics)
Wearable technology
title Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unsupervised%20Understanding%20of%20Location%20and%20Illumination%20Changes%20in%20Egocentric%20Videos&rft.jtitle=arXiv.org&rft.au=Betancourt,%20Alejandro&rft.date=2017-03-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075311738%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075311738&rft_id=info:pmid/&rfr_iscdi=true