Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos
Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mob...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-03 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Betancourt, Alejandro Díaz-Rodríguez, Natalia Barakova, Emilia Marcenaro, Lucio Rauterberg, Matthias Regazzoni, Carlo |
description | Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075311738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075311738</sourcerecordid><originalsourceid>FETCH-proquest_journals_20753117383</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoWdMv0XYyCHrNXGe5qE7uz3a3vT6gP6OnAOWfFIiFllpQHITYsJhrTNBXHQuS5jNitQQozuLch0LxBDY68Qm1w4LbnV9spbyzyRfHLNIWnwa-oHgoHIG6Q14PtAL0zHb8bDZZ2bN2riSD-ccv2p_pWnZPZ2VcA8u1og8MltSItcpllhSzlf9cHyTVA2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075311738</pqid></control><display><type>article</type><title>Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos</title><source>Free E- Journals</source><creator>Betancourt, Alejandro ; Díaz-Rodríguez, Natalia ; Barakova, Emilia ; Marcenaro, Lucio ; Rauterberg, Matthias ; Regazzoni, Carlo</creator><creatorcontrib>Betancourt, Alejandro ; Díaz-Rodríguez, Natalia ; Barakova, Emilia ; Marcenaro, Lucio ; Rauterberg, Matthias ; Regazzoni, Carlo</creatorcontrib><description>Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Cameras ; Light ; Machine learning ; Manifolds (mathematics) ; Wearable technology</subject><ispartof>arXiv.org, 2017-03</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Betancourt, Alejandro</creatorcontrib><creatorcontrib>Díaz-Rodríguez, Natalia</creatorcontrib><creatorcontrib>Barakova, Emilia</creatorcontrib><creatorcontrib>Marcenaro, Lucio</creatorcontrib><creatorcontrib>Rauterberg, Matthias</creatorcontrib><creatorcontrib>Regazzoni, Carlo</creatorcontrib><title>Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos</title><title>arXiv.org</title><description>Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Light</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Wearable technology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoWdMv0XYyCHrNXGe5qE7uz3a3vT6gP6OnAOWfFIiFllpQHITYsJhrTNBXHQuS5jNitQQozuLch0LxBDY68Qm1w4LbnV9spbyzyRfHLNIWnwa-oHgoHIG6Q14PtAL0zHb8bDZZ2bN2riSD-ccv2p_pWnZPZ2VcA8u1og8MltSItcpllhSzlf9cHyTVA2Q</recordid><startdate>20170327</startdate><enddate>20170327</enddate><creator>Betancourt, Alejandro</creator><creator>Díaz-Rodríguez, Natalia</creator><creator>Barakova, Emilia</creator><creator>Marcenaro, Lucio</creator><creator>Rauterberg, Matthias</creator><creator>Regazzoni, Carlo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170327</creationdate><title>Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos</title><author>Betancourt, Alejandro ; Díaz-Rodríguez, Natalia ; Barakova, Emilia ; Marcenaro, Lucio ; Rauterberg, Matthias ; Regazzoni, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20753117383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Light</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Wearable technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Betancourt, Alejandro</creatorcontrib><creatorcontrib>Díaz-Rodríguez, Natalia</creatorcontrib><creatorcontrib>Barakova, Emilia</creatorcontrib><creatorcontrib>Marcenaro, Lucio</creatorcontrib><creatorcontrib>Rauterberg, Matthias</creatorcontrib><creatorcontrib>Regazzoni, Carlo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betancourt, Alejandro</au><au>Díaz-Rodríguez, Natalia</au><au>Barakova, Emilia</au><au>Marcenaro, Lucio</au><au>Rauterberg, Matthias</au><au>Regazzoni, Carlo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos</atitle><jtitle>arXiv.org</jtitle><date>2017-03-27</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075311738 |
source | Free E- Journals |
subjects | Algorithms Cameras Light Machine learning Manifolds (mathematics) Wearable technology |
title | Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unsupervised%20Understanding%20of%20Location%20and%20Illumination%20Changes%20in%20Egocentric%20Videos&rft.jtitle=arXiv.org&rft.au=Betancourt,%20Alejandro&rft.date=2017-03-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075311738%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075311738&rft_id=info:pmid/&rfr_iscdi=true |