A counterexample to decomposing climate shifts and trends by weather types
The literature contains a sizable number of publications where weather types are used to decompose climate shifts or trends into contributions of frequency and mean of those types. They are all based on the product rule, that is, a transformation of a product of sums into a sum of products, the latt...
Gespeichert in:
Veröffentlicht in: | International journal of climatology 2018-07, Vol.38 (9), p.3732-3735 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3735 |
---|---|
container_issue | 9 |
container_start_page | 3732 |
container_title | International journal of climatology |
container_volume | 38 |
creator | Bürger, Gerd |
description | The literature contains a sizable number of publications where weather types are used to decompose climate shifts or trends into contributions of frequency and mean of those types. They are all based on the product rule, that is, a transformation of a product of sums into a sum of products, the latter providing the decomposition. While there is nothing to argue about the transformation itself, its interpretation as a climate shift or trend decomposition is bound to fail. While the case of a climate shift may be viewed as an incomplete description of a more complex behaviour, trend decomposition indeed produces bogus trends, as demonstrated by a synthetic counterexample with well‐defined trends in type frequency and mean. Consequently, decompositions based on that transformation, be it for climate shifts or trends, must not be used.
Example of a process with two weather types of given frequency and mean (top) and corresponding single trends (bottom). |
doi_str_mv | 10.1002/joc.5519 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075157089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075157089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2549-a330dd16793b14c2f3851e101bb159ac182ff41bcee2757a74326e8af1ed53ed3</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpSPwESywsKT4nru2xqvhUpS4wR459oanSONiuSv49KWVluuW5O70vIbfAZsAYf9h6OxMC9BmZANMyY0ypczJhSutMFaAuyVWMW8aY1jCfkLcFtX7fJQz4bXZ9izR56tD6Xe9j031S2zY7k5DGTVOnSE3naArYuUirgR7QpA0GmoYe4zW5qE0b8eZvTsnH0-P78iVbrZ9fl4tVZrkodGbynDkHc6nzCgrL61wJQGBQVSC0saB4XRdQWUQuhTSyyPkclakBncjR5VNyd7rbB_-1x5jKrd-HbnxZciYFCDmGHdX9SdngYwxYl30Yk4ShBFYemxq3bHlsaqTZiR6aFod_Xfm2Xv76HzjwadI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075157089</pqid></control><display><type>article</type><title>A counterexample to decomposing climate shifts and trends by weather types</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bürger, Gerd</creator><creatorcontrib>Bürger, Gerd</creatorcontrib><description>The literature contains a sizable number of publications where weather types are used to decompose climate shifts or trends into contributions of frequency and mean of those types. They are all based on the product rule, that is, a transformation of a product of sums into a sum of products, the latter providing the decomposition. While there is nothing to argue about the transformation itself, its interpretation as a climate shift or trend decomposition is bound to fail. While the case of a climate shift may be viewed as an incomplete description of a more complex behaviour, trend decomposition indeed produces bogus trends, as demonstrated by a synthetic counterexample with well‐defined trends in type frequency and mean. Consequently, decompositions based on that transformation, be it for climate shifts or trends, must not be used.
Example of a process with two weather types of given frequency and mean (top) and corresponding single trends (bottom).</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.5519</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>analysis ; Climate ; Decomposition ; statistical methods ; Trends ; Weather ; Weather types</subject><ispartof>International journal of climatology, 2018-07, Vol.38 (9), p.3732-3735</ispartof><rights>2018 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2549-a330dd16793b14c2f3851e101bb159ac182ff41bcee2757a74326e8af1ed53ed3</cites><orcidid>0000-0003-3539-2975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjoc.5519$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjoc.5519$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bürger, Gerd</creatorcontrib><title>A counterexample to decomposing climate shifts and trends by weather types</title><title>International journal of climatology</title><description>The literature contains a sizable number of publications where weather types are used to decompose climate shifts or trends into contributions of frequency and mean of those types. They are all based on the product rule, that is, a transformation of a product of sums into a sum of products, the latter providing the decomposition. While there is nothing to argue about the transformation itself, its interpretation as a climate shift or trend decomposition is bound to fail. While the case of a climate shift may be viewed as an incomplete description of a more complex behaviour, trend decomposition indeed produces bogus trends, as demonstrated by a synthetic counterexample with well‐defined trends in type frequency and mean. Consequently, decompositions based on that transformation, be it for climate shifts or trends, must not be used.
Example of a process with two weather types of given frequency and mean (top) and corresponding single trends (bottom).</description><subject>analysis</subject><subject>Climate</subject><subject>Decomposition</subject><subject>statistical methods</subject><subject>Trends</subject><subject>Weather</subject><subject>Weather types</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpSPwESywsKT4nru2xqvhUpS4wR459oanSONiuSv49KWVluuW5O70vIbfAZsAYf9h6OxMC9BmZANMyY0ypczJhSutMFaAuyVWMW8aY1jCfkLcFtX7fJQz4bXZ9izR56tD6Xe9j031S2zY7k5DGTVOnSE3naArYuUirgR7QpA0GmoYe4zW5qE0b8eZvTsnH0-P78iVbrZ9fl4tVZrkodGbynDkHc6nzCgrL61wJQGBQVSC0saB4XRdQWUQuhTSyyPkclakBncjR5VNyd7rbB_-1x5jKrd-HbnxZciYFCDmGHdX9SdngYwxYl30Yk4ShBFYemxq3bHlsaqTZiR6aFod_Xfm2Xv76HzjwadI</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Bürger, Gerd</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-3539-2975</orcidid></search><sort><creationdate>201807</creationdate><title>A counterexample to decomposing climate shifts and trends by weather types</title><author>Bürger, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2549-a330dd16793b14c2f3851e101bb159ac182ff41bcee2757a74326e8af1ed53ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>analysis</topic><topic>Climate</topic><topic>Decomposition</topic><topic>statistical methods</topic><topic>Trends</topic><topic>Weather</topic><topic>Weather types</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bürger, Gerd</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bürger, Gerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A counterexample to decomposing climate shifts and trends by weather types</atitle><jtitle>International journal of climatology</jtitle><date>2018-07</date><risdate>2018</risdate><volume>38</volume><issue>9</issue><spage>3732</spage><epage>3735</epage><pages>3732-3735</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>The literature contains a sizable number of publications where weather types are used to decompose climate shifts or trends into contributions of frequency and mean of those types. They are all based on the product rule, that is, a transformation of a product of sums into a sum of products, the latter providing the decomposition. While there is nothing to argue about the transformation itself, its interpretation as a climate shift or trend decomposition is bound to fail. While the case of a climate shift may be viewed as an incomplete description of a more complex behaviour, trend decomposition indeed produces bogus trends, as demonstrated by a synthetic counterexample with well‐defined trends in type frequency and mean. Consequently, decompositions based on that transformation, be it for climate shifts or trends, must not be used.
Example of a process with two weather types of given frequency and mean (top) and corresponding single trends (bottom).</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/joc.5519</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3539-2975</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8418 |
ispartof | International journal of climatology, 2018-07, Vol.38 (9), p.3732-3735 |
issn | 0899-8418 1097-0088 |
language | eng |
recordid | cdi_proquest_journals_2075157089 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | analysis Climate Decomposition statistical methods Trends Weather Weather types |
title | A counterexample to decomposing climate shifts and trends by weather types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20counterexample%20to%20decomposing%20climate%20shifts%20and%20trends%20by%20weather%20types&rft.jtitle=International%20journal%20of%20climatology&rft.au=B%C3%BCrger,%20Gerd&rft.date=2018-07&rft.volume=38&rft.issue=9&rft.spage=3732&rft.epage=3735&rft.pages=3732-3735&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.5519&rft_dat=%3Cproquest_cross%3E2075157089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075157089&rft_id=info:pmid/&rfr_iscdi=true |