Difference bases in finite Abelian groups
A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted b...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Banakh, Taras Gavrylkiv, Volodymyr |
description | A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted by \(\Delta[G]\). The fraction \(\eth[G]:=\frac{\Delta[G]}{\sqrt{|G|}}\) is called the difference characteristic of \(G\). Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number \(p\ge 11\), any finite Abelian \(p\)-group \(G\) has difference characteristic \(\eth[G] |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074866460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074866460</sourcerecordid><originalsourceid>FETCH-proquest_journals_20748664603</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdMlMS0stSs1LTlVISixOLVbIzFNIy8zLLElVcExKzclMzFNIL8ovLSjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzEwszMxMzA2PiVAEAvsowPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074866460</pqid></control><display><type>article</type><title>Difference bases in finite Abelian groups</title><source>Free E- Journals</source><creator>Banakh, Taras ; Gavrylkiv, Volodymyr</creator><creatorcontrib>Banakh, Taras ; Gavrylkiv, Volodymyr</creatorcontrib><description>A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted by \(\Delta[G]\). The fraction \(\eth[G]:=\frac{\Delta[G]}{\sqrt{|G|}}\) is called the difference characteristic of \(G\). Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number \(p\ge 11\), any finite Abelian \(p\)-group \(G\) has difference characteristic \(\eth[G]<\frac{\sqrt{p}-1}{\sqrt{p}-3}\cdot\sup_{k\in\mathbb N}\eth[C_{p^k}]<\sqrt{2}\cdot\frac{\sqrt{p}-1}{\sqrt{p}-3}\). Also we calculate the difference sizes of all Abelian groups of cardinality \(<96\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Upper bounds</subject><ispartof>arXiv.org, 2017-04</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Banakh, Taras</creatorcontrib><creatorcontrib>Gavrylkiv, Volodymyr</creatorcontrib><title>Difference bases in finite Abelian groups</title><title>arXiv.org</title><description>A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted by \(\Delta[G]\). The fraction \(\eth[G]:=\frac{\Delta[G]}{\sqrt{|G|}}\) is called the difference characteristic of \(G\). Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number \(p\ge 11\), any finite Abelian \(p\)-group \(G\) has difference characteristic \(\eth[G]<\frac{\sqrt{p}-1}{\sqrt{p}-3}\cdot\sup_{k\in\mathbb N}\eth[C_{p^k}]<\sqrt{2}\cdot\frac{\sqrt{p}-1}{\sqrt{p}-3}\). Also we calculate the difference sizes of all Abelian groups of cardinality \(<96\).</description><subject>Group theory</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdMlMS0stSs1LTlVISixOLVbIzFNIy8zLLElVcExKzclMzFNIL8ovLSjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzEwszMxMzA2PiVAEAvsowPw</recordid><startdate>20170413</startdate><enddate>20170413</enddate><creator>Banakh, Taras</creator><creator>Gavrylkiv, Volodymyr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170413</creationdate><title>Difference bases in finite Abelian groups</title><author>Banakh, Taras ; Gavrylkiv, Volodymyr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20748664603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Group theory</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Banakh, Taras</creatorcontrib><creatorcontrib>Gavrylkiv, Volodymyr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banakh, Taras</au><au>Gavrylkiv, Volodymyr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Difference bases in finite Abelian groups</atitle><jtitle>arXiv.org</jtitle><date>2017-04-13</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted by \(\Delta[G]\). The fraction \(\eth[G]:=\frac{\Delta[G]}{\sqrt{|G|}}\) is called the difference characteristic of \(G\). Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number \(p\ge 11\), any finite Abelian \(p\)-group \(G\) has difference characteristic \(\eth[G]<\frac{\sqrt{p}-1}{\sqrt{p}-3}\cdot\sup_{k\in\mathbb N}\eth[C_{p^k}]<\sqrt{2}\cdot\frac{\sqrt{p}-1}{\sqrt{p}-3}\). Also we calculate the difference sizes of all Abelian groups of cardinality \(<96\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074866460 |
source | Free E- Journals |
subjects | Group theory Upper bounds |
title | Difference bases in finite Abelian groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Difference%20bases%20in%20finite%20Abelian%20groups&rft.jtitle=arXiv.org&rft.au=Banakh,%20Taras&rft.date=2017-04-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074866460%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074866460&rft_id=info:pmid/&rfr_iscdi=true |