Difference bases in finite Abelian groups

A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-04
Hauptverfasser: Banakh, Taras, Gavrylkiv, Volodymyr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Banakh, Taras
Gavrylkiv, Volodymyr
description A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted by \(\Delta[G]\). The fraction \(\eth[G]:=\frac{\Delta[G]}{\sqrt{|G|}}\) is called the difference characteristic of \(G\). Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number \(p\ge 11\), any finite Abelian \(p\)-group \(G\) has difference characteristic \(\eth[G]
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074866460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074866460</sourcerecordid><originalsourceid>FETCH-proquest_journals_20748664603</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdMlMS0stSs1LTlVISixOLVbIzFNIy8zLLElVcExKzclMzFNIL8ovLSjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzEwszMxMzA2PiVAEAvsowPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074866460</pqid></control><display><type>article</type><title>Difference bases in finite Abelian groups</title><source>Free E- Journals</source><creator>Banakh, Taras ; Gavrylkiv, Volodymyr</creator><creatorcontrib>Banakh, Taras ; Gavrylkiv, Volodymyr</creatorcontrib><description>A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted by \(\Delta[G]\). The fraction \(\eth[G]:=\frac{\Delta[G]}{\sqrt{|G|}}\) is called the difference characteristic of \(G\). Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number \(p\ge 11\), any finite Abelian \(p\)-group \(G\) has difference characteristic \(\eth[G]&lt;\frac{\sqrt{p}-1}{\sqrt{p}-3}\cdot\sup_{k\in\mathbb N}\eth[C_{p^k}]&lt;\sqrt{2}\cdot\frac{\sqrt{p}-1}{\sqrt{p}-3}\). Also we calculate the difference sizes of all Abelian groups of cardinality \(&lt;96\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Upper bounds</subject><ispartof>arXiv.org, 2017-04</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Banakh, Taras</creatorcontrib><creatorcontrib>Gavrylkiv, Volodymyr</creatorcontrib><title>Difference bases in finite Abelian groups</title><title>arXiv.org</title><description>A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted by \(\Delta[G]\). The fraction \(\eth[G]:=\frac{\Delta[G]}{\sqrt{|G|}}\) is called the difference characteristic of \(G\). Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number \(p\ge 11\), any finite Abelian \(p\)-group \(G\) has difference characteristic \(\eth[G]&lt;\frac{\sqrt{p}-1}{\sqrt{p}-3}\cdot\sup_{k\in\mathbb N}\eth[C_{p^k}]&lt;\sqrt{2}\cdot\frac{\sqrt{p}-1}{\sqrt{p}-3}\). Also we calculate the difference sizes of all Abelian groups of cardinality \(&lt;96\).</description><subject>Group theory</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdMlMS0stSs1LTlVISixOLVbIzFNIy8zLLElVcExKzclMzFNIL8ovLSjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzEwszMxMzA2PiVAEAvsowPw</recordid><startdate>20170413</startdate><enddate>20170413</enddate><creator>Banakh, Taras</creator><creator>Gavrylkiv, Volodymyr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170413</creationdate><title>Difference bases in finite Abelian groups</title><author>Banakh, Taras ; Gavrylkiv, Volodymyr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20748664603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Group theory</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Banakh, Taras</creatorcontrib><creatorcontrib>Gavrylkiv, Volodymyr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banakh, Taras</au><au>Gavrylkiv, Volodymyr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Difference bases in finite Abelian groups</atitle><jtitle>arXiv.org</jtitle><date>2017-04-13</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>A subset \(B\) of a group \(G\) is called a difference basis of \(G\) if each element \(g\in G\) can be written as the difference \(g=ab^{-1}\) of some elements \(a,b\in B\). The smallest cardinality \(|B|\) of a difference basis \(B\subset G\) is called the difference size of \(G\) and is denoted by \(\Delta[G]\). The fraction \(\eth[G]:=\frac{\Delta[G]}{\sqrt{|G|}}\) is called the difference characteristic of \(G\). Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number \(p\ge 11\), any finite Abelian \(p\)-group \(G\) has difference characteristic \(\eth[G]&lt;\frac{\sqrt{p}-1}{\sqrt{p}-3}\cdot\sup_{k\in\mathbb N}\eth[C_{p^k}]&lt;\sqrt{2}\cdot\frac{\sqrt{p}-1}{\sqrt{p}-3}\). Also we calculate the difference sizes of all Abelian groups of cardinality \(&lt;96\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074866460
source Free E- Journals
subjects Group theory
Upper bounds
title Difference bases in finite Abelian groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Difference%20bases%20in%20finite%20Abelian%20groups&rft.jtitle=arXiv.org&rft.au=Banakh,%20Taras&rft.date=2017-04-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074866460%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074866460&rft_id=info:pmid/&rfr_iscdi=true