Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers
Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive...
Gespeichert in:
Veröffentlicht in: | Biomaterials science 2018-08, Vol.6 (8), p.2219-2229 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2229 |
---|---|
container_issue | 8 |
container_start_page | 2219 |
container_title | Biomaterials science |
container_volume | 6 |
creator | Vidiasheva, Irina V Abalymov, Anatolii A Kurochkin, Maxim A Mayorova, Oksana A Lomova, Maria V German, Sergey V Khalenkow, Dmitry N Zharkov, Mikhail N Gorin, Dmitry A Skirtach, Andre G Tuchin, Valery V Sukhorukov, Gleb B |
description | Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization. Microscopy methods have been used to evaluate the uptake of capsules by the cells. Magnetically sensitive cells are retained in the capillary flow when the magnetic gradient field is applied ( |
doi_str_mv | 10.1039/c8bm00479j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2074738562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074738562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a0cd36aee45d06d1078909aea24add35c035958497c5fd226e9f0af95fe2a4ee3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0Eoqh0wwcgS-wQAcePJF5CxVNFbMo6cu0xpCRxsB1V9OtJaels5kpz5mrmInSWkuuUMHmji0VDCM_l8gCd0EEkvODycK8ZGaFJCEsyVJ5LkqXHaESlLASX4gSt5161wYLHzmINdR3wqoqfuO-i-oIWt6p12jWdC1WEK9yojxbiIJPNoFM-VroGbPtWx8q1qq7WYLBWXehr2FlBDTp6t1vVOK4A1uDDKTqyqg4w2fUxen-4n0-fktnb4_P0dpZoVtCYKKINyxQAF4ZkJiV5IYlUoChXxjChCRNSDD_nWlhDaQbSEmWlsEAVB2BjdLH17bz77iHEcul6P9waSkpynrNCZHSgLreU9i4ED7bsfNUo_1OmpNwkXU6Lu9e_pF8G-Hxn2S8aMHv0P1f2CyIJfJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074738562</pqid></control><display><type>article</type><title>Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Vidiasheva, Irina V ; Abalymov, Anatolii A ; Kurochkin, Maxim A ; Mayorova, Oksana A ; Lomova, Maria V ; German, Sergey V ; Khalenkow, Dmitry N ; Zharkov, Mikhail N ; Gorin, Dmitry A ; Skirtach, Andre G ; Tuchin, Valery V ; Sukhorukov, Gleb B</creator><creatorcontrib>Vidiasheva, Irina V ; Abalymov, Anatolii A ; Kurochkin, Maxim A ; Mayorova, Oksana A ; Lomova, Maria V ; German, Sergey V ; Khalenkow, Dmitry N ; Zharkov, Mikhail N ; Gorin, Dmitry A ; Skirtach, Andre G ; Tuchin, Valery V ; Sukhorukov, Gleb B</creatorcontrib><description>Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization. Microscopy methods have been used to evaluate the uptake of capsules by the cells. Magnetically sensitive cells are retained in the capillary flow when the magnetic gradient field is applied (<200 T m-1), but they proliferate at the site of retention for several days after the magnet is removed. As an example of cell manipulation, we have demonstrated a novel methodology for cell sheet isolation and transfer using cells impregnated with magnetic microcapsules. A weak enzyme treatment is used to facilitate tissue engineering assemblies by cell monolayer deposition. This type of cell monolayer assembly has provided a 3D tissue engineering construction using an externally applied magnetic field, which is modelled in this study. The approach presented in this work opens perspectives for preclinical studies of tissue and organ repair.</description><identifier>ISSN: 2047-4830</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/c8bm00479j</identifier><identifier>PMID: 29985495</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Capillary flow ; Capsules - chemistry ; Cell Adhesion ; Cell Line ; Cell Proliferation ; Cercopithecus aethiops ; Electromagnetic Phenomena ; Magnetic fields ; Magnetism ; Magnetite Nanoparticles - chemistry ; Monolayers ; Multilayers ; Nanocomposites ; Nanocomposites - chemistry ; Nanoparticles ; Organs ; Polyelectrolytes ; Repair ; Tissue engineering ; Toxicity ; Transplantation</subject><ispartof>Biomaterials science, 2018-08, Vol.6 (8), p.2219-2229</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a0cd36aee45d06d1078909aea24add35c035958497c5fd226e9f0af95fe2a4ee3</citedby><cites>FETCH-LOGICAL-c382t-a0cd36aee45d06d1078909aea24add35c035958497c5fd226e9f0af95fe2a4ee3</cites><orcidid>0000-0001-7479-2694 ; 0000-0002-8272-1973 ; 0000-0002-4468-7620 ; 0000-0002-3957-2706 ; 0000-0001-6688-4724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29985495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidiasheva, Irina V</creatorcontrib><creatorcontrib>Abalymov, Anatolii A</creatorcontrib><creatorcontrib>Kurochkin, Maxim A</creatorcontrib><creatorcontrib>Mayorova, Oksana A</creatorcontrib><creatorcontrib>Lomova, Maria V</creatorcontrib><creatorcontrib>German, Sergey V</creatorcontrib><creatorcontrib>Khalenkow, Dmitry N</creatorcontrib><creatorcontrib>Zharkov, Mikhail N</creatorcontrib><creatorcontrib>Gorin, Dmitry A</creatorcontrib><creatorcontrib>Skirtach, Andre G</creatorcontrib><creatorcontrib>Tuchin, Valery V</creatorcontrib><creatorcontrib>Sukhorukov, Gleb B</creatorcontrib><title>Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers</title><title>Biomaterials science</title><addtitle>Biomater Sci</addtitle><description>Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization. Microscopy methods have been used to evaluate the uptake of capsules by the cells. Magnetically sensitive cells are retained in the capillary flow when the magnetic gradient field is applied (<200 T m-1), but they proliferate at the site of retention for several days after the magnet is removed. As an example of cell manipulation, we have demonstrated a novel methodology for cell sheet isolation and transfer using cells impregnated with magnetic microcapsules. A weak enzyme treatment is used to facilitate tissue engineering assemblies by cell monolayer deposition. This type of cell monolayer assembly has provided a 3D tissue engineering construction using an externally applied magnetic field, which is modelled in this study. The approach presented in this work opens perspectives for preclinical studies of tissue and organ repair.</description><subject>Animals</subject><subject>Capillary flow</subject><subject>Capsules - chemistry</subject><subject>Cell Adhesion</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cercopithecus aethiops</subject><subject>Electromagnetic Phenomena</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Monolayers</subject><subject>Multilayers</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanoparticles</subject><subject>Organs</subject><subject>Polyelectrolytes</subject><subject>Repair</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><subject>Transplantation</subject><issn>2047-4830</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0Eoqh0wwcgS-wQAcePJF5CxVNFbMo6cu0xpCRxsB1V9OtJaels5kpz5mrmInSWkuuUMHmji0VDCM_l8gCd0EEkvODycK8ZGaFJCEsyVJ5LkqXHaESlLASX4gSt5161wYLHzmINdR3wqoqfuO-i-oIWt6p12jWdC1WEK9yojxbiIJPNoFM-VroGbPtWx8q1qq7WYLBWXehr2FlBDTp6t1vVOK4A1uDDKTqyqg4w2fUxen-4n0-fktnb4_P0dpZoVtCYKKINyxQAF4ZkJiV5IYlUoChXxjChCRNSDD_nWlhDaQbSEmWlsEAVB2BjdLH17bz77iHEcul6P9waSkpynrNCZHSgLreU9i4ED7bsfNUo_1OmpNwkXU6Lu9e_pF8G-Hxn2S8aMHv0P1f2CyIJfJw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Vidiasheva, Irina V</creator><creator>Abalymov, Anatolii A</creator><creator>Kurochkin, Maxim A</creator><creator>Mayorova, Oksana A</creator><creator>Lomova, Maria V</creator><creator>German, Sergey V</creator><creator>Khalenkow, Dmitry N</creator><creator>Zharkov, Mikhail N</creator><creator>Gorin, Dmitry A</creator><creator>Skirtach, Andre G</creator><creator>Tuchin, Valery V</creator><creator>Sukhorukov, Gleb B</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7479-2694</orcidid><orcidid>https://orcid.org/0000-0002-8272-1973</orcidid><orcidid>https://orcid.org/0000-0002-4468-7620</orcidid><orcidid>https://orcid.org/0000-0002-3957-2706</orcidid><orcidid>https://orcid.org/0000-0001-6688-4724</orcidid></search><sort><creationdate>20180801</creationdate><title>Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers</title><author>Vidiasheva, Irina V ; Abalymov, Anatolii A ; Kurochkin, Maxim A ; Mayorova, Oksana A ; Lomova, Maria V ; German, Sergey V ; Khalenkow, Dmitry N ; Zharkov, Mikhail N ; Gorin, Dmitry A ; Skirtach, Andre G ; Tuchin, Valery V ; Sukhorukov, Gleb B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a0cd36aee45d06d1078909aea24add35c035958497c5fd226e9f0af95fe2a4ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Capillary flow</topic><topic>Capsules - chemistry</topic><topic>Cell Adhesion</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cercopithecus aethiops</topic><topic>Electromagnetic Phenomena</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Monolayers</topic><topic>Multilayers</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanoparticles</topic><topic>Organs</topic><topic>Polyelectrolytes</topic><topic>Repair</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidiasheva, Irina V</creatorcontrib><creatorcontrib>Abalymov, Anatolii A</creatorcontrib><creatorcontrib>Kurochkin, Maxim A</creatorcontrib><creatorcontrib>Mayorova, Oksana A</creatorcontrib><creatorcontrib>Lomova, Maria V</creatorcontrib><creatorcontrib>German, Sergey V</creatorcontrib><creatorcontrib>Khalenkow, Dmitry N</creatorcontrib><creatorcontrib>Zharkov, Mikhail N</creatorcontrib><creatorcontrib>Gorin, Dmitry A</creatorcontrib><creatorcontrib>Skirtach, Andre G</creatorcontrib><creatorcontrib>Tuchin, Valery V</creatorcontrib><creatorcontrib>Sukhorukov, Gleb B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidiasheva, Irina V</au><au>Abalymov, Anatolii A</au><au>Kurochkin, Maxim A</au><au>Mayorova, Oksana A</au><au>Lomova, Maria V</au><au>German, Sergey V</au><au>Khalenkow, Dmitry N</au><au>Zharkov, Mikhail N</au><au>Gorin, Dmitry A</au><au>Skirtach, Andre G</au><au>Tuchin, Valery V</au><au>Sukhorukov, Gleb B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers</atitle><jtitle>Biomaterials science</jtitle><addtitle>Biomater Sci</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>6</volume><issue>8</issue><spage>2219</spage><epage>2229</epage><pages>2219-2229</pages><issn>2047-4830</issn><eissn>2047-4849</eissn><abstract>Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization. Microscopy methods have been used to evaluate the uptake of capsules by the cells. Magnetically sensitive cells are retained in the capillary flow when the magnetic gradient field is applied (<200 T m-1), but they proliferate at the site of retention for several days after the magnet is removed. As an example of cell manipulation, we have demonstrated a novel methodology for cell sheet isolation and transfer using cells impregnated with magnetic microcapsules. A weak enzyme treatment is used to facilitate tissue engineering assemblies by cell monolayer deposition. This type of cell monolayer assembly has provided a 3D tissue engineering construction using an externally applied magnetic field, which is modelled in this study. The approach presented in this work opens perspectives for preclinical studies of tissue and organ repair.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29985495</pmid><doi>10.1039/c8bm00479j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7479-2694</orcidid><orcidid>https://orcid.org/0000-0002-8272-1973</orcidid><orcidid>https://orcid.org/0000-0002-4468-7620</orcidid><orcidid>https://orcid.org/0000-0002-3957-2706</orcidid><orcidid>https://orcid.org/0000-0001-6688-4724</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-4830 |
ispartof | Biomaterials science, 2018-08, Vol.6 (8), p.2219-2229 |
issn | 2047-4830 2047-4849 |
language | eng |
recordid | cdi_proquest_journals_2074738562 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Animals Capillary flow Capsules - chemistry Cell Adhesion Cell Line Cell Proliferation Cercopithecus aethiops Electromagnetic Phenomena Magnetic fields Magnetism Magnetite Nanoparticles - chemistry Monolayers Multilayers Nanocomposites Nanocomposites - chemistry Nanoparticles Organs Polyelectrolytes Repair Tissue engineering Toxicity Transplantation |
title | Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20of%20cells%20with%20uptaken%20nanocomposite,%20magnetite-nanoparticle%20functionalized%20capsules%20with%20electromagnetic%20tweezers&rft.jtitle=Biomaterials%20science&rft.au=Vidiasheva,%20Irina%20V&rft.date=2018-08-01&rft.volume=6&rft.issue=8&rft.spage=2219&rft.epage=2229&rft.pages=2219-2229&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/c8bm00479j&rft_dat=%3Cproquest_cross%3E2074738562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074738562&rft_id=info:pmid/29985495&rfr_iscdi=true |