Abnormal Event Detection in Videos using Spatiotemporal Autoencoder

We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-01
Hauptverfasser: Yong Shean Chong, Tay, Yong Haur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yong Shean Chong
Tay, Yong Haur
description We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074601818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074601818</sourcerecordid><originalsourceid>FETCH-proquest_journals_20746018183</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_GGgtjDM-ZitmtC_aiuktRvRem0ffn4s-oNWBc86GRVKpNNGZlDsWOzcKIWRRyjxXEaurB5Kdu4k3H0DPT-Ch94aQG-R3MwA5HpzBF78u3eo9zAvZda-CJ8CeBrAHtn12k4P4xz07nptbfUkWS-8AzrcjBYtraqUos0KkOtXqv-sLEiU6cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074601818</pqid></control><display><type>article</type><title>Abnormal Event Detection in Videos using Spatiotemporal Autoencoder</title><source>Free E- Journals</source><creator>Yong Shean Chong ; Tay, Yong Haur</creator><creatorcontrib>Yong Shean Chong ; Tay, Yong Haur</creatorcontrib><description>We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Architecture ; Artificial neural networks ; Image detection ; Neural networks ; Object recognition</subject><ispartof>arXiv.org, 2017-01</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Yong Shean Chong</creatorcontrib><creatorcontrib>Tay, Yong Haur</creatorcontrib><title>Abnormal Event Detection in Videos using Spatiotemporal Autoencoder</title><title>arXiv.org</title><description>We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps.</description><subject>Anomalies</subject><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Image detection</subject><subject>Neural networks</subject><subject>Object recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKgkAUQIcgSMp_GGgtjDM-ZitmtC_aiuktRvRem0ffn4s-oNWBc86GRVKpNNGZlDsWOzcKIWRRyjxXEaurB5Kdu4k3H0DPT-Ch94aQG-R3MwA5HpzBF78u3eo9zAvZda-CJ8CeBrAHtn12k4P4xz07nptbfUkWS-8AzrcjBYtraqUos0KkOtXqv-sLEiU6cw</recordid><startdate>20170106</startdate><enddate>20170106</enddate><creator>Yong Shean Chong</creator><creator>Tay, Yong Haur</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170106</creationdate><title>Abnormal Event Detection in Videos using Spatiotemporal Autoencoder</title><author>Yong Shean Chong ; Tay, Yong Haur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20746018183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Image detection</topic><topic>Neural networks</topic><topic>Object recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Yong Shean Chong</creatorcontrib><creatorcontrib>Tay, Yong Haur</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong Shean Chong</au><au>Tay, Yong Haur</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Abnormal Event Detection in Videos using Spatiotemporal Autoencoder</atitle><jtitle>arXiv.org</jtitle><date>2017-01-06</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074601818
source Free E- Journals
subjects Anomalies
Architecture
Artificial neural networks
Image detection
Neural networks
Object recognition
title Abnormal Event Detection in Videos using Spatiotemporal Autoencoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Abnormal%20Event%20Detection%20in%20Videos%20using%20Spatiotemporal%20Autoencoder&rft.jtitle=arXiv.org&rft.au=Yong%20Shean%20Chong&rft.date=2017-01-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074601818%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074601818&rft_id=info:pmid/&rfr_iscdi=true