Abnormal Event Detection in Videos using Spatiotemporal Autoencoder
We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as l...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yong Shean Chong Tay, Yong Haur |
description | We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074601818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074601818</sourcerecordid><originalsourceid>FETCH-proquest_journals_20746018183</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_GGgtjDM-ZitmtC_aiuktRvRem0ffn4s-oNWBc86GRVKpNNGZlDsWOzcKIWRRyjxXEaurB5Kdu4k3H0DPT-Ch94aQG-R3MwA5HpzBF78u3eo9zAvZda-CJ8CeBrAHtn12k4P4xz07nptbfUkWS-8AzrcjBYtraqUos0KkOtXqv-sLEiU6cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074601818</pqid></control><display><type>article</type><title>Abnormal Event Detection in Videos using Spatiotemporal Autoencoder</title><source>Free E- Journals</source><creator>Yong Shean Chong ; Tay, Yong Haur</creator><creatorcontrib>Yong Shean Chong ; Tay, Yong Haur</creatorcontrib><description>We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Architecture ; Artificial neural networks ; Image detection ; Neural networks ; Object recognition</subject><ispartof>arXiv.org, 2017-01</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Yong Shean Chong</creatorcontrib><creatorcontrib>Tay, Yong Haur</creatorcontrib><title>Abnormal Event Detection in Videos using Spatiotemporal Autoencoder</title><title>arXiv.org</title><description>We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps.</description><subject>Anomalies</subject><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Image detection</subject><subject>Neural networks</subject><subject>Object recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKgkAUQIcgSMp_GGgtjDM-ZitmtC_aiuktRvRem0ffn4s-oNWBc86GRVKpNNGZlDsWOzcKIWRRyjxXEaurB5Kdu4k3H0DPT-Ch94aQG-R3MwA5HpzBF78u3eo9zAvZda-CJ8CeBrAHtn12k4P4xz07nptbfUkWS-8AzrcjBYtraqUos0KkOtXqv-sLEiU6cw</recordid><startdate>20170106</startdate><enddate>20170106</enddate><creator>Yong Shean Chong</creator><creator>Tay, Yong Haur</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170106</creationdate><title>Abnormal Event Detection in Videos using Spatiotemporal Autoencoder</title><author>Yong Shean Chong ; Tay, Yong Haur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20746018183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Image detection</topic><topic>Neural networks</topic><topic>Object recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Yong Shean Chong</creatorcontrib><creatorcontrib>Tay, Yong Haur</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong Shean Chong</au><au>Tay, Yong Haur</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Abnormal Event Detection in Videos using Spatiotemporal Autoencoder</atitle><jtitle>arXiv.org</jtitle><date>2017-01-06</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074601818 |
source | Free E- Journals |
subjects | Anomalies Architecture Artificial neural networks Image detection Neural networks Object recognition |
title | Abnormal Event Detection in Videos using Spatiotemporal Autoencoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Abnormal%20Event%20Detection%20in%20Videos%20using%20Spatiotemporal%20Autoencoder&rft.jtitle=arXiv.org&rft.au=Yong%20Shean%20Chong&rft.date=2017-01-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074601818%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074601818&rft_id=info:pmid/&rfr_iscdi=true |