Net2Vec: Deep Learning for the Network

We present Net2Vec, a flexible high-performance platform that allows the execution of deep learning algorithms in the communication network. Net2Vec is able to capture data from the network at more than 60Gbps, transform it into meaningful tuples and apply predictions over the tuples in real time. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-05
Hauptverfasser: Gonzalez, Roberto, Manco, Filipe, Garcia-Duran, Alberto, Mendes, Jose, Huici, Felipe, Niccolini, Saverio, Niepert, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gonzalez, Roberto
Manco, Filipe
Garcia-Duran, Alberto
Mendes, Jose
Huici, Felipe
Niccolini, Saverio
Niepert, Mathias
description We present Net2Vec, a flexible high-performance platform that allows the execution of deep learning algorithms in the communication network. Net2Vec is able to capture data from the network at more than 60Gbps, transform it into meaningful tuples and apply predictions over the tuples in real time. This platform can be used for different purposes ranging from traffic classification to network performance analysis. Finally, we showcase the use of Net2Vec by implementing and testing a solution able to profile network users at line rate using traces coming from a real network. We show that the use of deep learning for this case outperforms the baseline method both in terms of accuracy and performance.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074505175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074505175</sourcerecordid><originalsourceid>FETCH-proquest_journals_20745051753</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ80stMQpLTbZScElNLVDwSU0sysvMS1dIyy9SKMlIVQBKl-cXZfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgbmJqYGpobmpMXGqAMaiLmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074505175</pqid></control><display><type>article</type><title>Net2Vec: Deep Learning for the Network</title><source>Free E- Journals</source><creator>Gonzalez, Roberto ; Manco, Filipe ; Garcia-Duran, Alberto ; Mendes, Jose ; Huici, Felipe ; Niccolini, Saverio ; Niepert, Mathias</creator><creatorcontrib>Gonzalez, Roberto ; Manco, Filipe ; Garcia-Duran, Alberto ; Mendes, Jose ; Huici, Felipe ; Niccolini, Saverio ; Niepert, Mathias</creatorcontrib><description>We present Net2Vec, a flexible high-performance platform that allows the execution of deep learning algorithms in the communication network. Net2Vec is able to capture data from the network at more than 60Gbps, transform it into meaningful tuples and apply predictions over the tuples in real time. This platform can be used for different purposes ranging from traffic classification to network performance analysis. Finally, we showcase the use of Net2Vec by implementing and testing a solution able to profile network users at line rate using traces coming from a real network. We show that the use of deep learning for this case outperforms the baseline method both in terms of accuracy and performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Case depth ; Deep learning ; Network management systems</subject><ispartof>arXiv.org, 2017-05</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gonzalez, Roberto</creatorcontrib><creatorcontrib>Manco, Filipe</creatorcontrib><creatorcontrib>Garcia-Duran, Alberto</creatorcontrib><creatorcontrib>Mendes, Jose</creatorcontrib><creatorcontrib>Huici, Felipe</creatorcontrib><creatorcontrib>Niccolini, Saverio</creatorcontrib><creatorcontrib>Niepert, Mathias</creatorcontrib><title>Net2Vec: Deep Learning for the Network</title><title>arXiv.org</title><description>We present Net2Vec, a flexible high-performance platform that allows the execution of deep learning algorithms in the communication network. Net2Vec is able to capture data from the network at more than 60Gbps, transform it into meaningful tuples and apply predictions over the tuples in real time. This platform can be used for different purposes ranging from traffic classification to network performance analysis. Finally, we showcase the use of Net2Vec by implementing and testing a solution able to profile network users at line rate using traces coming from a real network. We show that the use of deep learning for this case outperforms the baseline method both in terms of accuracy and performance.</description><subject>Algorithms</subject><subject>Case depth</subject><subject>Deep learning</subject><subject>Network management systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ80stMQpLTbZScElNLVDwSU0sysvMS1dIyy9SKMlIVQBKl-cXZfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgbmJqYGpobmpMXGqAMaiLmQ</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Gonzalez, Roberto</creator><creator>Manco, Filipe</creator><creator>Garcia-Duran, Alberto</creator><creator>Mendes, Jose</creator><creator>Huici, Felipe</creator><creator>Niccolini, Saverio</creator><creator>Niepert, Mathias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170510</creationdate><title>Net2Vec: Deep Learning for the Network</title><author>Gonzalez, Roberto ; Manco, Filipe ; Garcia-Duran, Alberto ; Mendes, Jose ; Huici, Felipe ; Niccolini, Saverio ; Niepert, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20745051753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Case depth</topic><topic>Deep learning</topic><topic>Network management systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Roberto</creatorcontrib><creatorcontrib>Manco, Filipe</creatorcontrib><creatorcontrib>Garcia-Duran, Alberto</creatorcontrib><creatorcontrib>Mendes, Jose</creatorcontrib><creatorcontrib>Huici, Felipe</creatorcontrib><creatorcontrib>Niccolini, Saverio</creatorcontrib><creatorcontrib>Niepert, Mathias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Roberto</au><au>Manco, Filipe</au><au>Garcia-Duran, Alberto</au><au>Mendes, Jose</au><au>Huici, Felipe</au><au>Niccolini, Saverio</au><au>Niepert, Mathias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Net2Vec: Deep Learning for the Network</atitle><jtitle>arXiv.org</jtitle><date>2017-05-10</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We present Net2Vec, a flexible high-performance platform that allows the execution of deep learning algorithms in the communication network. Net2Vec is able to capture data from the network at more than 60Gbps, transform it into meaningful tuples and apply predictions over the tuples in real time. This platform can be used for different purposes ranging from traffic classification to network performance analysis. Finally, we showcase the use of Net2Vec by implementing and testing a solution able to profile network users at line rate using traces coming from a real network. We show that the use of deep learning for this case outperforms the baseline method both in terms of accuracy and performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074505175
source Free E- Journals
subjects Algorithms
Case depth
Deep learning
Network management systems
title Net2Vec: Deep Learning for the Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Net2Vec:%20Deep%20Learning%20for%20the%20Network&rft.jtitle=arXiv.org&rft.au=Gonzalez,%20Roberto&rft.date=2017-05-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074505175%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074505175&rft_id=info:pmid/&rfr_iscdi=true