Hyporeductive and Pseudoreductive Hopf algebras

In his generalization of reductive homogeneous spaces, Lev Sabinin showed that Lie's fundamental theorems hold for local analytic hyporeductive and pseudoreductive loops. We derive Sabinin's results in an algebraic context in terms of non-associative Hopf algebras that satisfy the analog o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-02
1. Verfasser: Pérez-Izquierdo, J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pérez-Izquierdo, J M
description In his generalization of reductive homogeneous spaces, Lev Sabinin showed that Lie's fundamental theorems hold for local analytic hyporeductive and pseudoreductive loops. We derive Sabinin's results in an algebraic context in terms of non-associative Hopf algebras that satisfy the analog of the hyporeductive and pseudoreductive identities for loops.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074479235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074479235</sourcerecordid><originalsourceid>FETCH-proquest_journals_20744792353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ96gsyC9KTSlNLsksS1VIzEtRCChOLU1BEvPIL0hTSMxJT00qSizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzExNzSyNjU2PiVAEAapIzMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074479235</pqid></control><display><type>article</type><title>Hyporeductive and Pseudoreductive Hopf algebras</title><source>Free E- Journals</source><creator>Pérez-Izquierdo, J M</creator><creatorcontrib>Pérez-Izquierdo, J M</creatorcontrib><description>In his generalization of reductive homogeneous spaces, Lev Sabinin showed that Lie's fundamental theorems hold for local analytic hyporeductive and pseudoreductive loops. We derive Sabinin's results in an algebraic context in terms of non-associative Hopf algebras that satisfy the analog of the hyporeductive and pseudoreductive identities for loops.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra</subject><ispartof>arXiv.org, 2017-02</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Pérez-Izquierdo, J M</creatorcontrib><title>Hyporeductive and Pseudoreductive Hopf algebras</title><title>arXiv.org</title><description>In his generalization of reductive homogeneous spaces, Lev Sabinin showed that Lie's fundamental theorems hold for local analytic hyporeductive and pseudoreductive loops. We derive Sabinin's results in an algebraic context in terms of non-associative Hopf algebras that satisfy the analog of the hyporeductive and pseudoreductive identities for loops.</description><subject>Algebra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ96gsyC9KTSlNLsksS1VIzEtRCChOLU1BEvPIL0hTSMxJT00qSizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzExNzSyNjU2PiVAEAapIzMQ</recordid><startdate>20170216</startdate><enddate>20170216</enddate><creator>Pérez-Izquierdo, J M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170216</creationdate><title>Hyporeductive and Pseudoreductive Hopf algebras</title><author>Pérez-Izquierdo, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20744792353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Izquierdo, J M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Izquierdo, J M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hyporeductive and Pseudoreductive Hopf algebras</atitle><jtitle>arXiv.org</jtitle><date>2017-02-16</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In his generalization of reductive homogeneous spaces, Lev Sabinin showed that Lie's fundamental theorems hold for local analytic hyporeductive and pseudoreductive loops. We derive Sabinin's results in an algebraic context in terms of non-associative Hopf algebras that satisfy the analog of the hyporeductive and pseudoreductive identities for loops.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074479235
source Free E- Journals
subjects Algebra
title Hyporeductive and Pseudoreductive Hopf algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hyporeductive%20and%20Pseudoreductive%20Hopf%20algebras&rft.jtitle=arXiv.org&rft.au=P%C3%A9rez-Izquierdo,%20J%20M&rft.date=2017-02-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074479235%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074479235&rft_id=info:pmid/&rfr_iscdi=true