NEURAL: quantitative features for newborn EEG using Matlab
Background: For newborn infants in critical care, continuous monitoring of brain function can help identify infants at-risk of brain injury. Quantitative features allow a consistent and reproducible approach to EEG analysis, but only when all implementation aspects are clearly defined. Methods: We d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | O' Toole, John M Boylan, Geraldine B |
description | Background: For newborn infants in critical care, continuous monitoring of brain function can help identify infants at-risk of brain injury. Quantitative features allow a consistent and reproducible approach to EEG analysis, but only when all implementation aspects are clearly defined. Methods: We detail quantitative features frequently used in neonatal EEG analysis and present a Matlab software package together with exact implementation details for all features. The feature set includes stationary features that capture amplitude and frequency characteristics and features of inter-hemispheric connectivity. The software, a Neonatal Eeg featURe set in mAtLab (NEURAL), is open source and freely available. The software also includes a pre-processing stage with a basic artefact removal procedure. Conclusions: NEURAL provides a common platform for quantitative analysis of neonatal EEG. This will support reproducible research and enable comparisons across independent studies. These features present summary measures of the EEG that can also be used in automated methods to determine brain development and health of the newborn in critical care. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074464339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074464339</sourcerecordid><originalsourceid>FETCH-proquest_journals_20744643393</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8nMNDXL0sVIoLE3MK8ksSSzJLEtVSEtNLCktSi1WSMsvUshLLU_KL8pTcHV1VygtzsxLV_BNLMlJTOJhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjA3MTEzMTY2NLY-JUAQBXWDX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074464339</pqid></control><display><type>article</type><title>NEURAL: quantitative features for newborn EEG using Matlab</title><source>Free E- Journals</source><creator>O' Toole, John M ; Boylan, Geraldine B</creator><creatorcontrib>O' Toole, John M ; Boylan, Geraldine B</creatorcontrib><description>Background: For newborn infants in critical care, continuous monitoring of brain function can help identify infants at-risk of brain injury. Quantitative features allow a consistent and reproducible approach to EEG analysis, but only when all implementation aspects are clearly defined. Methods: We detail quantitative features frequently used in neonatal EEG analysis and present a Matlab software package together with exact implementation details for all features. The feature set includes stationary features that capture amplitude and frequency characteristics and features of inter-hemispheric connectivity. The software, a Neonatal Eeg featURe set in mAtLab (NEURAL), is open source and freely available. The software also includes a pre-processing stage with a basic artefact removal procedure. Conclusions: NEURAL provides a common platform for quantitative analysis of neonatal EEG. This will support reproducible research and enable comparisons across independent studies. These features present summary measures of the EEG that can also be used in automated methods to determine brain development and health of the newborn in critical care.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brain ; Continuity (mathematics) ; Critical care ; Head injuries ; Infants ; Matlab ; Newborn babies ; Quantitative analysis ; Software</subject><ispartof>arXiv.org, 2017-04</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>O' Toole, John M</creatorcontrib><creatorcontrib>Boylan, Geraldine B</creatorcontrib><title>NEURAL: quantitative features for newborn EEG using Matlab</title><title>arXiv.org</title><description>Background: For newborn infants in critical care, continuous monitoring of brain function can help identify infants at-risk of brain injury. Quantitative features allow a consistent and reproducible approach to EEG analysis, but only when all implementation aspects are clearly defined. Methods: We detail quantitative features frequently used in neonatal EEG analysis and present a Matlab software package together with exact implementation details for all features. The feature set includes stationary features that capture amplitude and frequency characteristics and features of inter-hemispheric connectivity. The software, a Neonatal Eeg featURe set in mAtLab (NEURAL), is open source and freely available. The software also includes a pre-processing stage with a basic artefact removal procedure. Conclusions: NEURAL provides a common platform for quantitative analysis of neonatal EEG. This will support reproducible research and enable comparisons across independent studies. These features present summary measures of the EEG that can also be used in automated methods to determine brain development and health of the newborn in critical care.</description><subject>Brain</subject><subject>Continuity (mathematics)</subject><subject>Critical care</subject><subject>Head injuries</subject><subject>Infants</subject><subject>Matlab</subject><subject>Newborn babies</subject><subject>Quantitative analysis</subject><subject>Software</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8nMNDXL0sVIoLE3MK8ksSSzJLEtVSEtNLCktSi1WSMsvUshLLU_KL8pTcHV1VygtzsxLV_BNLMlJTOJhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjA3MTEzMTY2NLY-JUAQBXWDX8</recordid><startdate>20170419</startdate><enddate>20170419</enddate><creator>O' Toole, John M</creator><creator>Boylan, Geraldine B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170419</creationdate><title>NEURAL: quantitative features for newborn EEG using Matlab</title><author>O' Toole, John M ; Boylan, Geraldine B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20744643393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain</topic><topic>Continuity (mathematics)</topic><topic>Critical care</topic><topic>Head injuries</topic><topic>Infants</topic><topic>Matlab</topic><topic>Newborn babies</topic><topic>Quantitative analysis</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>O' Toole, John M</creatorcontrib><creatorcontrib>Boylan, Geraldine B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O' Toole, John M</au><au>Boylan, Geraldine B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>NEURAL: quantitative features for newborn EEG using Matlab</atitle><jtitle>arXiv.org</jtitle><date>2017-04-19</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Background: For newborn infants in critical care, continuous monitoring of brain function can help identify infants at-risk of brain injury. Quantitative features allow a consistent and reproducible approach to EEG analysis, but only when all implementation aspects are clearly defined. Methods: We detail quantitative features frequently used in neonatal EEG analysis and present a Matlab software package together with exact implementation details for all features. The feature set includes stationary features that capture amplitude and frequency characteristics and features of inter-hemispheric connectivity. The software, a Neonatal Eeg featURe set in mAtLab (NEURAL), is open source and freely available. The software also includes a pre-processing stage with a basic artefact removal procedure. Conclusions: NEURAL provides a common platform for quantitative analysis of neonatal EEG. This will support reproducible research and enable comparisons across independent studies. These features present summary measures of the EEG that can also be used in automated methods to determine brain development and health of the newborn in critical care.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074464339 |
source | Free E- Journals |
subjects | Brain Continuity (mathematics) Critical care Head injuries Infants Matlab Newborn babies Quantitative analysis Software |
title | NEURAL: quantitative features for newborn EEG using Matlab |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=NEURAL:%20quantitative%20features%20for%20newborn%20EEG%20using%20Matlab&rft.jtitle=arXiv.org&rft.au=O'%20Toole,%20John%20M&rft.date=2017-04-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074464339%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074464339&rft_id=info:pmid/&rfr_iscdi=true |