Optimizing Schedules for Quantum Annealing

Classical and quantum annealing are two heuristic optimization methods that search for an optimal solution by slowly decreasing thermal or quantum fluctuations. Optimizing annealing schedules is important both for performance and fair comparisons between classical annealing, quantum annealing, and o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-05
Hauptverfasser: Herr, Daniel, Brown, Ethan, Heim, Bettina, Könz, Mario, Mazzola, Guglielmo, Troyer, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Herr, Daniel
Brown, Ethan
Heim, Bettina
Könz, Mario
Mazzola, Guglielmo
Troyer, Matthias
description Classical and quantum annealing are two heuristic optimization methods that search for an optimal solution by slowly decreasing thermal or quantum fluctuations. Optimizing annealing schedules is important both for performance and fair comparisons between classical annealing, quantum annealing, and other algorithms. Here we present a heuristic approach for the optimization of annealing schedules for quantum annealing and apply it to 3D Ising spin glass problems. We find that if both classical and quantum annealing schedules are similarly optimized, classical annealing outperforms quantum annealing for these problems when considering the residual energy obtained in slow annealing. However, when performing many repetitions of fast annealing, simulated quantum annealing is seen to outperform classical annealing for our benchmark problems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074239281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074239281</sourcerecordid><originalsourceid>FETCH-proquest_journals_20742392813</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8i8oyczNrMrMS1cITs5ITSnNSS1WSMsvUggsTcwrKc1VcMzLS03MAcrzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYG5iZGxpZGFoTFxqgAsCjEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074239281</pqid></control><display><type>article</type><title>Optimizing Schedules for Quantum Annealing</title><source>Freely Accessible Journals</source><creator>Herr, Daniel ; Brown, Ethan ; Heim, Bettina ; Könz, Mario ; Mazzola, Guglielmo ; Troyer, Matthias</creator><creatorcontrib>Herr, Daniel ; Brown, Ethan ; Heim, Bettina ; Könz, Mario ; Mazzola, Guglielmo ; Troyer, Matthias</creatorcontrib><description>Classical and quantum annealing are two heuristic optimization methods that search for an optimal solution by slowly decreasing thermal or quantum fluctuations. Optimizing annealing schedules is important both for performance and fair comparisons between classical annealing, quantum annealing, and other algorithms. Here we present a heuristic approach for the optimization of annealing schedules for quantum annealing and apply it to 3D Ising spin glass problems. We find that if both classical and quantum annealing schedules are similarly optimized, classical annealing outperforms quantum annealing for these problems when considering the residual energy obtained in slow annealing. However, when performing many repetitions of fast annealing, simulated quantum annealing is seen to outperform classical annealing for our benchmark problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annealing ; Computer simulation ; Heuristic methods ; Ising model ; Optimization ; Quantum phenomena ; Residual energy ; Schedules ; Spin glasses</subject><ispartof>arXiv.org, 2017-05</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Herr, Daniel</creatorcontrib><creatorcontrib>Brown, Ethan</creatorcontrib><creatorcontrib>Heim, Bettina</creatorcontrib><creatorcontrib>Könz, Mario</creatorcontrib><creatorcontrib>Mazzola, Guglielmo</creatorcontrib><creatorcontrib>Troyer, Matthias</creatorcontrib><title>Optimizing Schedules for Quantum Annealing</title><title>arXiv.org</title><description>Classical and quantum annealing are two heuristic optimization methods that search for an optimal solution by slowly decreasing thermal or quantum fluctuations. Optimizing annealing schedules is important both for performance and fair comparisons between classical annealing, quantum annealing, and other algorithms. Here we present a heuristic approach for the optimization of annealing schedules for quantum annealing and apply it to 3D Ising spin glass problems. We find that if both classical and quantum annealing schedules are similarly optimized, classical annealing outperforms quantum annealing for these problems when considering the residual energy obtained in slow annealing. However, when performing many repetitions of fast annealing, simulated quantum annealing is seen to outperform classical annealing for our benchmark problems.</description><subject>Algorithms</subject><subject>Annealing</subject><subject>Computer simulation</subject><subject>Heuristic methods</subject><subject>Ising model</subject><subject>Optimization</subject><subject>Quantum phenomena</subject><subject>Residual energy</subject><subject>Schedules</subject><subject>Spin glasses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8i8oyczNrMrMS1cITs5ITSnNSS1WSMsvUggsTcwrKc1VcMzLS03MAcrzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYG5iZGxpZGFoTFxqgAsCjEE</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Herr, Daniel</creator><creator>Brown, Ethan</creator><creator>Heim, Bettina</creator><creator>Könz, Mario</creator><creator>Mazzola, Guglielmo</creator><creator>Troyer, Matthias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170501</creationdate><title>Optimizing Schedules for Quantum Annealing</title><author>Herr, Daniel ; Brown, Ethan ; Heim, Bettina ; Könz, Mario ; Mazzola, Guglielmo ; Troyer, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20742392813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Annealing</topic><topic>Computer simulation</topic><topic>Heuristic methods</topic><topic>Ising model</topic><topic>Optimization</topic><topic>Quantum phenomena</topic><topic>Residual energy</topic><topic>Schedules</topic><topic>Spin glasses</topic><toplevel>online_resources</toplevel><creatorcontrib>Herr, Daniel</creatorcontrib><creatorcontrib>Brown, Ethan</creatorcontrib><creatorcontrib>Heim, Bettina</creatorcontrib><creatorcontrib>Könz, Mario</creatorcontrib><creatorcontrib>Mazzola, Guglielmo</creatorcontrib><creatorcontrib>Troyer, Matthias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herr, Daniel</au><au>Brown, Ethan</au><au>Heim, Bettina</au><au>Könz, Mario</au><au>Mazzola, Guglielmo</au><au>Troyer, Matthias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimizing Schedules for Quantum Annealing</atitle><jtitle>arXiv.org</jtitle><date>2017-05-01</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Classical and quantum annealing are two heuristic optimization methods that search for an optimal solution by slowly decreasing thermal or quantum fluctuations. Optimizing annealing schedules is important both for performance and fair comparisons between classical annealing, quantum annealing, and other algorithms. Here we present a heuristic approach for the optimization of annealing schedules for quantum annealing and apply it to 3D Ising spin glass problems. We find that if both classical and quantum annealing schedules are similarly optimized, classical annealing outperforms quantum annealing for these problems when considering the residual energy obtained in slow annealing. However, when performing many repetitions of fast annealing, simulated quantum annealing is seen to outperform classical annealing for our benchmark problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074239281
source Freely Accessible Journals
subjects Algorithms
Annealing
Computer simulation
Heuristic methods
Ising model
Optimization
Quantum phenomena
Residual energy
Schedules
Spin glasses
title Optimizing Schedules for Quantum Annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimizing%20Schedules%20for%20Quantum%20Annealing&rft.jtitle=arXiv.org&rft.au=Herr,%20Daniel&rft.date=2017-05-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074239281%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074239281&rft_id=info:pmid/&rfr_iscdi=true