On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions

We study a generalization of the Navier-Stokes-Fourier system for an incompressible fluid where the deviatoric part of the Cauchy stress tensor is related to the symmetric part of the velocity gradient via a maximal monotone 2-graph that is continuously parametrized by the temperature. As such, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-05
Hauptverfasser: Maringová, Erika, Žabenský, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Maringová, Erika
Žabenský, Josef
description We study a generalization of the Navier-Stokes-Fourier system for an incompressible fluid where the deviatoric part of the Cauchy stress tensor is related to the symmetric part of the velocity gradient via a maximal monotone 2-graph that is continuously parametrized by the temperature. As such, the considered fluid may go through transitions between three of the following regimes: it can flow as a Bingham fluid for a specific value of the temperature, while it can behave as the Navier-Stokes fluid for another value of the temperature or, for yet another temperature, it can respond as the Euler fluid until a certain activation initiates the response of the Navier-Stokes fluid. At the same time, we regard a generalized threshold slip on the boundary that also may go through various regimes continuously with the temperature. All material coefficients like the dynamic viscosity, friction or activation coefficients are assumed to be temperature-dependent. We establish the large-data and long-time existence of weak solutions, applying the \(L^{\infty}\)-truncation technique to approximate the velocity field.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074237167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074237167</sourcerecordid><originalsourceid>FETCH-proquest_journals_20742371673</originalsourceid><addsrcrecordid>eNqNjsGKAjEQRIOwsLLrPzR4DoyJOnsXxZMe1rvEmR5pHTtjOlH8Gz91xx29e6mmXhVU91TfWDvSP2NjPtVA5JBlmZnmZjKxfXVfMzhYuQth0L_RH1H0wqfwsDUdEeQmEU9QuCa2lPcQg2OhSJ4FdhiviAwXksInAcclED8clVDVqdWAezphF73q7LXU1PyzBkOFRezAzicuXbhB4bnsNr7VR-VqwcHzfqnhYr6ZLXUT_DmhxO2hfZfbaGuyfGxsPprm9r3WH5nAXec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074237167</pqid></control><display><type>article</type><title>On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions</title><source>Freely Accessible Journals</source><creator>Maringová, Erika ; Žabenský, Josef</creator><creatorcontrib>Maringová, Erika ; Žabenský, Josef</creatorcontrib><description>We study a generalization of the Navier-Stokes-Fourier system for an incompressible fluid where the deviatoric part of the Cauchy stress tensor is related to the symmetric part of the velocity gradient via a maximal monotone 2-graph that is continuously parametrized by the temperature. As such, the considered fluid may go through transitions between three of the following regimes: it can flow as a Bingham fluid for a specific value of the temperature, while it can behave as the Navier-Stokes fluid for another value of the temperature or, for yet another temperature, it can respond as the Euler fluid until a certain activation initiates the response of the Navier-Stokes fluid. At the same time, we regard a generalized threshold slip on the boundary that also may go through various regimes continuously with the temperature. All material coefficients like the dynamic viscosity, friction or activation coefficients are assumed to be temperature-dependent. We establish the large-data and long-time existence of weak solutions, applying the \(L^{\infty}\)-truncation technique to approximate the velocity field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Activation ; Boundary conditions ; Fluid dynamics ; Fluid flow ; Incompressible flow ; Incompressible fluids ; Navier-Stokes equations ; Slip ; Temperature dependence ; Tensors ; Velocity distribution ; Velocity gradient</subject><ispartof>arXiv.org, 2017-05</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Maringová, Erika</creatorcontrib><creatorcontrib>Žabenský, Josef</creatorcontrib><title>On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions</title><title>arXiv.org</title><description>We study a generalization of the Navier-Stokes-Fourier system for an incompressible fluid where the deviatoric part of the Cauchy stress tensor is related to the symmetric part of the velocity gradient via a maximal monotone 2-graph that is continuously parametrized by the temperature. As such, the considered fluid may go through transitions between three of the following regimes: it can flow as a Bingham fluid for a specific value of the temperature, while it can behave as the Navier-Stokes fluid for another value of the temperature or, for yet another temperature, it can respond as the Euler fluid until a certain activation initiates the response of the Navier-Stokes fluid. At the same time, we regard a generalized threshold slip on the boundary that also may go through various regimes continuously with the temperature. All material coefficients like the dynamic viscosity, friction or activation coefficients are assumed to be temperature-dependent. We establish the large-data and long-time existence of weak solutions, applying the \(L^{\infty}\)-truncation technique to approximate the velocity field.</description><subject>Activation</subject><subject>Boundary conditions</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Navier-Stokes equations</subject><subject>Slip</subject><subject>Temperature dependence</subject><subject>Tensors</subject><subject>Velocity distribution</subject><subject>Velocity gradient</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsGKAjEQRIOwsLLrPzR4DoyJOnsXxZMe1rvEmR5pHTtjOlH8Gz91xx29e6mmXhVU91TfWDvSP2NjPtVA5JBlmZnmZjKxfXVfMzhYuQth0L_RH1H0wqfwsDUdEeQmEU9QuCa2lPcQg2OhSJ4FdhiviAwXksInAcclED8clVDVqdWAezphF73q7LXU1PyzBkOFRezAzicuXbhB4bnsNr7VR-VqwcHzfqnhYr6ZLXUT_DmhxO2hfZfbaGuyfGxsPprm9r3WH5nAXec</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Maringová, Erika</creator><creator>Žabenský, Josef</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170501</creationdate><title>On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions</title><author>Maringová, Erika ; Žabenský, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20742371673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Boundary conditions</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Navier-Stokes equations</topic><topic>Slip</topic><topic>Temperature dependence</topic><topic>Tensors</topic><topic>Velocity distribution</topic><topic>Velocity gradient</topic><toplevel>online_resources</toplevel><creatorcontrib>Maringová, Erika</creatorcontrib><creatorcontrib>Žabenský, Josef</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maringová, Erika</au><au>Žabenský, Josef</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions</atitle><jtitle>arXiv.org</jtitle><date>2017-05-01</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We study a generalization of the Navier-Stokes-Fourier system for an incompressible fluid where the deviatoric part of the Cauchy stress tensor is related to the symmetric part of the velocity gradient via a maximal monotone 2-graph that is continuously parametrized by the temperature. As such, the considered fluid may go through transitions between three of the following regimes: it can flow as a Bingham fluid for a specific value of the temperature, while it can behave as the Navier-Stokes fluid for another value of the temperature or, for yet another temperature, it can respond as the Euler fluid until a certain activation initiates the response of the Navier-Stokes fluid. At the same time, we regard a generalized threshold slip on the boundary that also may go through various regimes continuously with the temperature. All material coefficients like the dynamic viscosity, friction or activation coefficients are assumed to be temperature-dependent. We establish the large-data and long-time existence of weak solutions, applying the \(L^{\infty}\)-truncation technique to approximate the velocity field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074237167
source Freely Accessible Journals
subjects Activation
Boundary conditions
Fluid dynamics
Fluid flow
Incompressible flow
Incompressible fluids
Navier-Stokes equations
Slip
Temperature dependence
Tensors
Velocity distribution
Velocity gradient
title On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20a%20Navier-Stokes-Fourier-like%20system%20capturing%20transitions%20between%20viscous%20and%20inviscid%20fluid%20regimes%20and%20between%20no-slip%20and%20perfect-slip%20boundary%20conditions&rft.jtitle=arXiv.org&rft.au=Maringov%C3%A1,%20Erika&rft.date=2017-05-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074237167%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074237167&rft_id=info:pmid/&rfr_iscdi=true