Ulrich bundles on intersections of two 4-dimensional quadrics
In this paper, we investigate the existence of Ulrich bundles on a smooth complete intersection of two \(4\)-dimensional quadrics in \(\mathbb P^5\) by two completely different methods. First, we find good ACM curves and use Serre correspondence in order to construct Ulrich bundles, which is analogo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cho, Yonghwa Kim, Yeongrak Lee, Kyoung-Seog |
description | In this paper, we investigate the existence of Ulrich bundles on a smooth complete intersection of two \(4\)-dimensional quadrics in \(\mathbb P^5\) by two completely different methods. First, we find good ACM curves and use Serre correspondence in order to construct Ulrich bundles, which is analogous to the construction on a cubic threefold by Casanellas-Hartshorne-Geiss-Schreyer. Next, we use Bondal-Orlov's semiorthogonal decomposition of the derived category of coherent sheaves to analyze Ulrich bundles. Using these methods, we prove that any smooth intersection of two 4-dimensional quadrics in \(\mathbb P^5\) carries an Ulrich bundle of rank \(r\) for every \(r \ge 2\). Moreover, we provide a description of the moduli space of stable Ulrich bundles. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074213894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074213894</sourcerecordid><originalsourceid>FETCH-proquest_journals_20742138943</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAIMgWLR_CHgOpJvU1oMnUXyAnkttUpoSE5tN8Pvm4AM8DQwzK1KAEBVrJcCGlIgz5xwODdS1KMjpYYMZJvpMTlmN1DtqXNQB9RCNd1mMNH48lUyZl3aYXW_pknqVN9yR9dhb1OWPW7K_Xu7nG3sHvySNsZt9CvnADngjoRLtUYr_qi-Wxjgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074213894</pqid></control><display><type>article</type><title>Ulrich bundles on intersections of two 4-dimensional quadrics</title><source>Free E- Journals</source><creator>Cho, Yonghwa ; Kim, Yeongrak ; Lee, Kyoung-Seog</creator><creatorcontrib>Cho, Yonghwa ; Kim, Yeongrak ; Lee, Kyoung-Seog</creatorcontrib><description>In this paper, we investigate the existence of Ulrich bundles on a smooth complete intersection of two \(4\)-dimensional quadrics in \(\mathbb P^5\) by two completely different methods. First, we find good ACM curves and use Serre correspondence in order to construct Ulrich bundles, which is analogous to the construction on a cubic threefold by Casanellas-Hartshorne-Geiss-Schreyer. Next, we use Bondal-Orlov's semiorthogonal decomposition of the derived category of coherent sheaves to analyze Ulrich bundles. Using these methods, we prove that any smooth intersection of two 4-dimensional quadrics in \(\mathbb P^5\) carries an Ulrich bundle of rank \(r\) for every \(r \ge 2\). Moreover, we provide a description of the moduli space of stable Ulrich bundles.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bundles ; Bundling ; Intersections ; Sheaves</subject><ispartof>arXiv.org, 2017-04</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cho, Yonghwa</creatorcontrib><creatorcontrib>Kim, Yeongrak</creatorcontrib><creatorcontrib>Lee, Kyoung-Seog</creatorcontrib><title>Ulrich bundles on intersections of two 4-dimensional quadrics</title><title>arXiv.org</title><description>In this paper, we investigate the existence of Ulrich bundles on a smooth complete intersection of two \(4\)-dimensional quadrics in \(\mathbb P^5\) by two completely different methods. First, we find good ACM curves and use Serre correspondence in order to construct Ulrich bundles, which is analogous to the construction on a cubic threefold by Casanellas-Hartshorne-Geiss-Schreyer. Next, we use Bondal-Orlov's semiorthogonal decomposition of the derived category of coherent sheaves to analyze Ulrich bundles. Using these methods, we prove that any smooth intersection of two 4-dimensional quadrics in \(\mathbb P^5\) carries an Ulrich bundle of rank \(r\) for every \(r \ge 2\). Moreover, we provide a description of the moduli space of stable Ulrich bundles.</description><subject>Bundles</subject><subject>Bundling</subject><subject>Intersections</subject><subject>Sheaves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0EKwjAQAIMgWLR_CHgOpJvU1oMnUXyAnkttUpoSE5tN8Pvm4AM8DQwzK1KAEBVrJcCGlIgz5xwODdS1KMjpYYMZJvpMTlmN1DtqXNQB9RCNd1mMNH48lUyZl3aYXW_pknqVN9yR9dhb1OWPW7K_Xu7nG3sHvySNsZt9CvnADngjoRLtUYr_qi-Wxjgs</recordid><startdate>20170411</startdate><enddate>20170411</enddate><creator>Cho, Yonghwa</creator><creator>Kim, Yeongrak</creator><creator>Lee, Kyoung-Seog</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170411</creationdate><title>Ulrich bundles on intersections of two 4-dimensional quadrics</title><author>Cho, Yonghwa ; Kim, Yeongrak ; Lee, Kyoung-Seog</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20742138943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bundles</topic><topic>Bundling</topic><topic>Intersections</topic><topic>Sheaves</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yonghwa</creatorcontrib><creatorcontrib>Kim, Yeongrak</creatorcontrib><creatorcontrib>Lee, Kyoung-Seog</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yonghwa</au><au>Kim, Yeongrak</au><au>Lee, Kyoung-Seog</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ulrich bundles on intersections of two 4-dimensional quadrics</atitle><jtitle>arXiv.org</jtitle><date>2017-04-11</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In this paper, we investigate the existence of Ulrich bundles on a smooth complete intersection of two \(4\)-dimensional quadrics in \(\mathbb P^5\) by two completely different methods. First, we find good ACM curves and use Serre correspondence in order to construct Ulrich bundles, which is analogous to the construction on a cubic threefold by Casanellas-Hartshorne-Geiss-Schreyer. Next, we use Bondal-Orlov's semiorthogonal decomposition of the derived category of coherent sheaves to analyze Ulrich bundles. Using these methods, we prove that any smooth intersection of two 4-dimensional quadrics in \(\mathbb P^5\) carries an Ulrich bundle of rank \(r\) for every \(r \ge 2\). Moreover, we provide a description of the moduli space of stable Ulrich bundles.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074213894 |
source | Free E- Journals |
subjects | Bundles Bundling Intersections Sheaves |
title | Ulrich bundles on intersections of two 4-dimensional quadrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ulrich%20bundles%20on%20intersections%20of%20two%204-dimensional%20quadrics&rft.jtitle=arXiv.org&rft.au=Cho,%20Yonghwa&rft.date=2017-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074213894%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074213894&rft_id=info:pmid/&rfr_iscdi=true |