Stability of Fredholm property for regular operators on Hilbert \(C^\)-modules
We study the stability of Fredholm property for regular operators on Hilbert \(C^*\)-modules under some certain perturbations. We treat this problem when perturbing operators are (relatively) bounded or relatively compact. We also consider the perturbations of regular Fredholm operators in terms of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | ough, Marzieh |
description | We study the stability of Fredholm property for regular operators on Hilbert \(C^*\)-modules under some certain perturbations. We treat this problem when perturbing operators are (relatively) bounded or relatively compact. We also consider the perturbations of regular Fredholm operators in terms of the gap metric. In particular, we prove that the space of all regular Fredholm operators on a Hilbert \(C^*\)-module \(E\) is open in the space of all regular operators on \(E\) with respect to the gap metric. As an application, we construct some continuous paths of selfadjoint regular Fredholm operators with respect to the gap metric. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074120915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074120915</sourcerecordid><originalsourceid>FETCH-proquest_journals_20741209153</originalsourceid><addsrcrecordid>eNqNjM0KgkAURocgSMp3uNCmFsI4o1lrSVy1qaUkI46ljF6bn0Vv3wQ9QKsPznc4CxIwzuPomDC2IqExA6WUHTKWpjwgl6sVTa96-wbsoNCyfaIaYdY4S-1hhxq0fDglNHyRsKgN4ARlrxpvQLXL79U-GrF1SpoNWXZCGRn-dk22xfmWl5EPvpw0th7Q6clfNaNZEjN6ilP-n_UB1rw-AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074120915</pqid></control><display><type>article</type><title>Stability of Fredholm property for regular operators on Hilbert \(C^\)-modules</title><source>Free E- Journals</source><creator>ough, Marzieh</creator><creatorcontrib>ough, Marzieh</creatorcontrib><description>We study the stability of Fredholm property for regular operators on Hilbert \(C^*\)-modules under some certain perturbations. We treat this problem when perturbing operators are (relatively) bounded or relatively compact. We also consider the perturbations of regular Fredholm operators in terms of the gap metric. In particular, we prove that the space of all regular Fredholm operators on a Hilbert \(C^*\)-module \(E\) is open in the space of all regular operators on \(E\) with respect to the gap metric. As an application, we construct some continuous paths of selfadjoint regular Fredholm operators with respect to the gap metric.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Modules ; Operators ; Stability</subject><ispartof>arXiv.org, 2017-02</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>ough, Marzieh</creatorcontrib><title>Stability of Fredholm property for regular operators on Hilbert \(C^\)-modules</title><title>arXiv.org</title><description>We study the stability of Fredholm property for regular operators on Hilbert \(C^*\)-modules under some certain perturbations. We treat this problem when perturbing operators are (relatively) bounded or relatively compact. We also consider the perturbations of regular Fredholm operators in terms of the gap metric. In particular, we prove that the space of all regular Fredholm operators on a Hilbert \(C^*\)-module \(E\) is open in the space of all regular operators on \(E\) with respect to the gap metric. As an application, we construct some continuous paths of selfadjoint regular Fredholm operators with respect to the gap metric.</description><subject>Modules</subject><subject>Operators</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM0KgkAURocgSMp3uNCmFsI4o1lrSVy1qaUkI46ljF6bn0Vv3wQ9QKsPznc4CxIwzuPomDC2IqExA6WUHTKWpjwgl6sVTa96-wbsoNCyfaIaYdY4S-1hhxq0fDglNHyRsKgN4ARlrxpvQLXL79U-GrF1SpoNWXZCGRn-dk22xfmWl5EPvpw0th7Q6clfNaNZEjN6ilP-n_UB1rw-AA</recordid><startdate>20170218</startdate><enddate>20170218</enddate><creator>ough, Marzieh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170218</creationdate><title>Stability of Fredholm property for regular operators on Hilbert \(C^\)-modules</title><author>ough, Marzieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20741209153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Modules</topic><topic>Operators</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>ough, Marzieh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ough, Marzieh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stability of Fredholm property for regular operators on Hilbert \(C^\)-modules</atitle><jtitle>arXiv.org</jtitle><date>2017-02-18</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We study the stability of Fredholm property for regular operators on Hilbert \(C^*\)-modules under some certain perturbations. We treat this problem when perturbing operators are (relatively) bounded or relatively compact. We also consider the perturbations of regular Fredholm operators in terms of the gap metric. In particular, we prove that the space of all regular Fredholm operators on a Hilbert \(C^*\)-module \(E\) is open in the space of all regular operators on \(E\) with respect to the gap metric. As an application, we construct some continuous paths of selfadjoint regular Fredholm operators with respect to the gap metric.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2074120915 |
source | Free E- Journals |
subjects | Modules Operators Stability |
title | Stability of Fredholm property for regular operators on Hilbert \(C^\)-modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stability%20of%20Fredholm%20property%20for%20regular%20operators%20on%20Hilbert%20%5C(C%5E%5C)-modules&rft.jtitle=arXiv.org&rft.au=ough,%20Marzieh&rft.date=2017-02-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074120915%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074120915&rft_id=info:pmid/&rfr_iscdi=true |