A single-atom 3D sub-attonewton force sensor

All physical interactions are mediated by forces. Ultra-sensitive force measurements are therefore a crucial tool for investigating the fundamental physics of magnetic, atomic, quantum, and surface phenomena. Laser cooled trapped atomic ions are a well controlled quantum system and a standard platfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-03
Hauptverfasser: Blūms, V, Piotrowski, M, Hussain, M I, Norton, B G, Connell, S C, Gensemer, S, Lobino, M, Streed, E W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Blūms, V
Piotrowski, M
Hussain, M I
Norton, B G
Connell, S C
Gensemer, S
Lobino, M
Streed, E W
description All physical interactions are mediated by forces. Ultra-sensitive force measurements are therefore a crucial tool for investigating the fundamental physics of magnetic, atomic, quantum, and surface phenomena. Laser cooled trapped atomic ions are a well controlled quantum system and a standard platform for precision metrology. Their low mass, strong Coulomb interaction, and readily detectable fluorescence signal make trapped ions favourable for performing high-sensitivity force measurements. Here we demonstrate a three-dimensional sub-attonewton sensitivity force sensor based on super-resolution imaging of the fluorescence from a single laser cooled \(^{174}\)Yb\(^+\) ion in a Paul trap. The force is detected by measuring the net ion displacement with nanometer precision, and does not rely on mechanical oscillation. Observed sensitivities were 372\(\pm\)9\(_\mbox{stat}\), 347\(\pm\)12\(_\mbox{sys}\pm\)14\(_\mbox{stat}\), and 808\(\pm\)29\(_\mbox{sys}\pm\)42\(_\mbox{stat}\) zN/\(\sqrt{\mbox{Hz}}\) in the three dimensions, corresponding to 24x, 87x, and 21x of the quantum limit. We independently verified the accuracy of this apparatus by measuring a light pressure force of 95 zN on the ion, an important systematic effect in any optically based force sensor. This technique can be applied for sensing DC or low frequency forces external to the trap or internally from a co-trapped biomolecule or nanoparticle.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074114619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074114619</sourcerecordid><originalsourceid>FETCH-proquest_journals_20741146193</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcVQozsxLz0nVTSzJz1UwdlEoLk0Cskvy81LLgYRCWn5RcqpCcWpecX4RDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxmYmxgampgZWhoTpwoARo4xIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074114619</pqid></control><display><type>article</type><title>A single-atom 3D sub-attonewton force sensor</title><source>Free E- Journals</source><creator>Blūms, V ; Piotrowski, M ; Hussain, M I ; Norton, B G ; Connell, S C ; Gensemer, S ; Lobino, M ; Streed, E W</creator><creatorcontrib>Blūms, V ; Piotrowski, M ; Hussain, M I ; Norton, B G ; Connell, S C ; Gensemer, S ; Lobino, M ; Streed, E W</creatorcontrib><description>All physical interactions are mediated by forces. Ultra-sensitive force measurements are therefore a crucial tool for investigating the fundamental physics of magnetic, atomic, quantum, and surface phenomena. Laser cooled trapped atomic ions are a well controlled quantum system and a standard platform for precision metrology. Their low mass, strong Coulomb interaction, and readily detectable fluorescence signal make trapped ions favourable for performing high-sensitivity force measurements. Here we demonstrate a three-dimensional sub-attonewton sensitivity force sensor based on super-resolution imaging of the fluorescence from a single laser cooled \(^{174}\)Yb\(^+\) ion in a Paul trap. The force is detected by measuring the net ion displacement with nanometer precision, and does not rely on mechanical oscillation. Observed sensitivities were 372\(\pm\)9\(_\mbox{stat}\), 347\(\pm\)12\(_\mbox{sys}\pm\)14\(_\mbox{stat}\), and 808\(\pm\)29\(_\mbox{sys}\pm\)42\(_\mbox{stat}\) zN/\(\sqrt{\mbox{Hz}}\) in the three dimensions, corresponding to 24x, 87x, and 21x of the quantum limit. We independently verified the accuracy of this apparatus by measuring a light pressure force of 95 zN on the ion, an important systematic effect in any optically based force sensor. This technique can be applied for sensing DC or low frequency forces external to the trap or internally from a co-trapped biomolecule or nanoparticle.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fluorescence ; Force measurement ; Image resolution ; Laser cooling ; Measuring instruments ; Nanoparticles ; Quantum theory ; Sensitivity ; Sensors</subject><ispartof>arXiv.org, 2017-03</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Blūms, V</creatorcontrib><creatorcontrib>Piotrowski, M</creatorcontrib><creatorcontrib>Hussain, M I</creatorcontrib><creatorcontrib>Norton, B G</creatorcontrib><creatorcontrib>Connell, S C</creatorcontrib><creatorcontrib>Gensemer, S</creatorcontrib><creatorcontrib>Lobino, M</creatorcontrib><creatorcontrib>Streed, E W</creatorcontrib><title>A single-atom 3D sub-attonewton force sensor</title><title>arXiv.org</title><description>All physical interactions are mediated by forces. Ultra-sensitive force measurements are therefore a crucial tool for investigating the fundamental physics of magnetic, atomic, quantum, and surface phenomena. Laser cooled trapped atomic ions are a well controlled quantum system and a standard platform for precision metrology. Their low mass, strong Coulomb interaction, and readily detectable fluorescence signal make trapped ions favourable for performing high-sensitivity force measurements. Here we demonstrate a three-dimensional sub-attonewton sensitivity force sensor based on super-resolution imaging of the fluorescence from a single laser cooled \(^{174}\)Yb\(^+\) ion in a Paul trap. The force is detected by measuring the net ion displacement with nanometer precision, and does not rely on mechanical oscillation. Observed sensitivities were 372\(\pm\)9\(_\mbox{stat}\), 347\(\pm\)12\(_\mbox{sys}\pm\)14\(_\mbox{stat}\), and 808\(\pm\)29\(_\mbox{sys}\pm\)42\(_\mbox{stat}\) zN/\(\sqrt{\mbox{Hz}}\) in the three dimensions, corresponding to 24x, 87x, and 21x of the quantum limit. We independently verified the accuracy of this apparatus by measuring a light pressure force of 95 zN on the ion, an important systematic effect in any optically based force sensor. This technique can be applied for sensing DC or low frequency forces external to the trap or internally from a co-trapped biomolecule or nanoparticle.</description><subject>Fluorescence</subject><subject>Force measurement</subject><subject>Image resolution</subject><subject>Laser cooling</subject><subject>Measuring instruments</subject><subject>Nanoparticles</subject><subject>Quantum theory</subject><subject>Sensitivity</subject><subject>Sensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcVQozsxLz0nVTSzJz1UwdlEoLk0Cskvy81LLgYRCWn5RcqpCcWpecX4RDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxmYmxgampgZWhoTpwoARo4xIg</recordid><startdate>20170320</startdate><enddate>20170320</enddate><creator>Blūms, V</creator><creator>Piotrowski, M</creator><creator>Hussain, M I</creator><creator>Norton, B G</creator><creator>Connell, S C</creator><creator>Gensemer, S</creator><creator>Lobino, M</creator><creator>Streed, E W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170320</creationdate><title>A single-atom 3D sub-attonewton force sensor</title><author>Blūms, V ; Piotrowski, M ; Hussain, M I ; Norton, B G ; Connell, S C ; Gensemer, S ; Lobino, M ; Streed, E W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20741146193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fluorescence</topic><topic>Force measurement</topic><topic>Image resolution</topic><topic>Laser cooling</topic><topic>Measuring instruments</topic><topic>Nanoparticles</topic><topic>Quantum theory</topic><topic>Sensitivity</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Blūms, V</creatorcontrib><creatorcontrib>Piotrowski, M</creatorcontrib><creatorcontrib>Hussain, M I</creatorcontrib><creatorcontrib>Norton, B G</creatorcontrib><creatorcontrib>Connell, S C</creatorcontrib><creatorcontrib>Gensemer, S</creatorcontrib><creatorcontrib>Lobino, M</creatorcontrib><creatorcontrib>Streed, E W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blūms, V</au><au>Piotrowski, M</au><au>Hussain, M I</au><au>Norton, B G</au><au>Connell, S C</au><au>Gensemer, S</au><au>Lobino, M</au><au>Streed, E W</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A single-atom 3D sub-attonewton force sensor</atitle><jtitle>arXiv.org</jtitle><date>2017-03-20</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>All physical interactions are mediated by forces. Ultra-sensitive force measurements are therefore a crucial tool for investigating the fundamental physics of magnetic, atomic, quantum, and surface phenomena. Laser cooled trapped atomic ions are a well controlled quantum system and a standard platform for precision metrology. Their low mass, strong Coulomb interaction, and readily detectable fluorescence signal make trapped ions favourable for performing high-sensitivity force measurements. Here we demonstrate a three-dimensional sub-attonewton sensitivity force sensor based on super-resolution imaging of the fluorescence from a single laser cooled \(^{174}\)Yb\(^+\) ion in a Paul trap. The force is detected by measuring the net ion displacement with nanometer precision, and does not rely on mechanical oscillation. Observed sensitivities were 372\(\pm\)9\(_\mbox{stat}\), 347\(\pm\)12\(_\mbox{sys}\pm\)14\(_\mbox{stat}\), and 808\(\pm\)29\(_\mbox{sys}\pm\)42\(_\mbox{stat}\) zN/\(\sqrt{\mbox{Hz}}\) in the three dimensions, corresponding to 24x, 87x, and 21x of the quantum limit. We independently verified the accuracy of this apparatus by measuring a light pressure force of 95 zN on the ion, an important systematic effect in any optically based force sensor. This technique can be applied for sensing DC or low frequency forces external to the trap or internally from a co-trapped biomolecule or nanoparticle.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074114619
source Free E- Journals
subjects Fluorescence
Force measurement
Image resolution
Laser cooling
Measuring instruments
Nanoparticles
Quantum theory
Sensitivity
Sensors
title A single-atom 3D sub-attonewton force sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20single-atom%203D%20sub-attonewton%20force%20sensor&rft.jtitle=arXiv.org&rft.au=Bl%C5%ABms,%20V&rft.date=2017-03-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074114619%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074114619&rft_id=info:pmid/&rfr_iscdi=true