On p-stability in groups and fusion systems

The aim of this paper is to generalise the notion of p-stability to fusion systems. We study the question how Qd(p) is involved in finite simple groups. We show that with a single exception a simple group involving Qd(p) has a subgroup isomorphic to either Qd(p) or a central extension of it by a cyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-01
Hauptverfasser: Héthelyi, László, Szőke, Magdolna, Zalesski, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Héthelyi, László
Szőke, Magdolna
Zalesski, Alexandre
description The aim of this paper is to generalise the notion of p-stability to fusion systems. We study the question how Qd(p) is involved in finite simple groups. We show that with a single exception a simple group involving Qd(p) has a subgroup isomorphic to either Qd(p) or a central extension of it by a cyclic group of order p. We define p-stability for fusion systems, characterise some of its properties and prove a fusion theoretic version of Thomson's maximal subgroup theorem. We introduce the notion of section p-stability both for groups and fusion systems and prove a version of Glauberman's theorem to fusion systems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2074107881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074107881</sourcerecordid><originalsourceid>FETCH-proquest_journals_20741078813</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9s9TKNAtLklMyszJLKlUyMxTSC_KLy0oVkjMS1FIKy3OzM9TKK4sLknNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjA3MTQwNzCwtDY-JUAQBInzFB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074107881</pqid></control><display><type>article</type><title>On p-stability in groups and fusion systems</title><source>Free E- Journals</source><creator>Héthelyi, László ; Szőke, Magdolna ; Zalesski, Alexandre</creator><creatorcontrib>Héthelyi, László ; Szőke, Magdolna ; Zalesski, Alexandre</creatorcontrib><description>The aim of this paper is to generalise the notion of p-stability to fusion systems. We study the question how Qd(p) is involved in finite simple groups. We show that with a single exception a simple group involving Qd(p) has a subgroup isomorphic to either Qd(p) or a central extension of it by a cyclic group of order p. We define p-stability for fusion systems, characterise some of its properties and prove a fusion theoretic version of Thomson's maximal subgroup theorem. We introduce the notion of section p-stability both for groups and fusion systems and prove a version of Glauberman's theorem to fusion systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Stability ; Subgroups ; Theorems</subject><ispartof>arXiv.org, 2017-01</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Héthelyi, László</creatorcontrib><creatorcontrib>Szőke, Magdolna</creatorcontrib><creatorcontrib>Zalesski, Alexandre</creatorcontrib><title>On p-stability in groups and fusion systems</title><title>arXiv.org</title><description>The aim of this paper is to generalise the notion of p-stability to fusion systems. We study the question how Qd(p) is involved in finite simple groups. We show that with a single exception a simple group involving Qd(p) has a subgroup isomorphic to either Qd(p) or a central extension of it by a cyclic group of order p. We define p-stability for fusion systems, characterise some of its properties and prove a fusion theoretic version of Thomson's maximal subgroup theorem. We introduce the notion of section p-stability both for groups and fusion systems and prove a version of Glauberman's theorem to fusion systems.</description><subject>Stability</subject><subject>Subgroups</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9s9TKNAtLklMyszJLKlUyMxTSC_KLy0oVkjMS1FIKy3OzM9TKK4sLknNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjA3MTQwNzCwtDY-JUAQBInzFB</recordid><startdate>20170108</startdate><enddate>20170108</enddate><creator>Héthelyi, László</creator><creator>Szőke, Magdolna</creator><creator>Zalesski, Alexandre</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170108</creationdate><title>On p-stability in groups and fusion systems</title><author>Héthelyi, László ; Szőke, Magdolna ; Zalesski, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20741078813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Stability</topic><topic>Subgroups</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Héthelyi, László</creatorcontrib><creatorcontrib>Szőke, Magdolna</creatorcontrib><creatorcontrib>Zalesski, Alexandre</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Héthelyi, László</au><au>Szőke, Magdolna</au><au>Zalesski, Alexandre</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On p-stability in groups and fusion systems</atitle><jtitle>arXiv.org</jtitle><date>2017-01-08</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>The aim of this paper is to generalise the notion of p-stability to fusion systems. We study the question how Qd(p) is involved in finite simple groups. We show that with a single exception a simple group involving Qd(p) has a subgroup isomorphic to either Qd(p) or a central extension of it by a cyclic group of order p. We define p-stability for fusion systems, characterise some of its properties and prove a fusion theoretic version of Thomson's maximal subgroup theorem. We introduce the notion of section p-stability both for groups and fusion systems and prove a version of Glauberman's theorem to fusion systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2074107881
source Free E- Journals
subjects Stability
Subgroups
Theorems
title On p-stability in groups and fusion systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20p-stability%20in%20groups%20and%20fusion%20systems&rft.jtitle=arXiv.org&rft.au=H%C3%A9thelyi,%20L%C3%A1szl%C3%B3&rft.date=2017-01-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2074107881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074107881&rft_id=info:pmid/&rfr_iscdi=true