Influences of Slip Velocity and Induced Magnetic Field on MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid over a Stretching Sheet
The steady MHD boundary layer flow near the stagnation point over a stretching surface in the presence of the induced magnetic field, viscous dissipation, magnetic dissipation, slip velocity phenomenon, and heat generation/absorption effects has been investigated numerically. The Casson fluid model...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Abd El Aziz, Mohamed Afify, Ahmed A. |
description | The steady MHD boundary layer flow near the stagnation point over a stretching surface in the presence of the induced magnetic field, viscous dissipation, magnetic dissipation, slip velocity phenomenon, and heat generation/absorption effects has been investigated numerically. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. The governing partial differential equations using appropriate similarity transformations are reduced into a set of nonlinear ordinary differential equations, which are solved numerically using a shooting method with fourth-order Runge-Kutta integration scheme. Comparisons with the earlier results have been made and good agreements were found. Numerical results for the velocity, induced magnetic field, temperature profiles, skin friction coefficient, and Nusselt number are presented through graphs and tables for various values of physical parameters. Results predicted that the magnetic parameter with α1. It is also noticed that the rate of heat transfer is a decreasing function of the reciprocal of a magnetic Prandtl number, whereas the opposite phenomenon occurs with the magnitude of the friction factor. |
doi_str_mv | 10.1155/2018/9402836 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2074090123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074090123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-de5bef5634a82489c676746ca2107c33e196e132ac34e415392761285f90af773</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxRdRUKs3zxLwqKv5t9ndo1RrC4pCVbwtMTuxKWtSk6ylH8LvbGoFj55mGH7vDe9l2RHB54QUxQXFpLqoOaYVE1vZHikEywvCy-20Y8pzQtnLbrYfwhxjSgpS7WVfE6u7HqyCgJxG084s0DN0Tpm4QtK2aGLbXkGL7uSbhWgUGhnoWuQsuhtfoWlMZxmNs_mDMzaiUeeWP7oxyIgevbRBg19bD2UISTXqepPkn-kok9xDVDNj39B0BhAPsh0tuwCHv3OQPY2uH4fj_Pb-ZjK8vM0VEzjmLRSvoFM6LivKq1qJUpRcKEkJLhVjQGoBhFGpGAdOClbTUhBaFbrGUpclG2QnG9-Fdx89hNjMXe9tetlQXHJc41RVos42lPIuBA-6WXjzLv2qIbhZF96sC29-C0_46QZPeVq5NP_RxxsaEgNa_tEU14IR9g0qu4iJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074090123</pqid></control><display><type>article</type><title>Influences of Slip Velocity and Induced Magnetic Field on MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid over a Stretching Sheet</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Abd El Aziz, Mohamed ; Afify, Ahmed A.</creator><contributor>Tzirtzilakis, Efstratios ; Efstratios Tzirtzilakis</contributor><creatorcontrib>Abd El Aziz, Mohamed ; Afify, Ahmed A. ; Tzirtzilakis, Efstratios ; Efstratios Tzirtzilakis</creatorcontrib><description>The steady MHD boundary layer flow near the stagnation point over a stretching surface in the presence of the induced magnetic field, viscous dissipation, magnetic dissipation, slip velocity phenomenon, and heat generation/absorption effects has been investigated numerically. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. The governing partial differential equations using appropriate similarity transformations are reduced into a set of nonlinear ordinary differential equations, which are solved numerically using a shooting method with fourth-order Runge-Kutta integration scheme. Comparisons with the earlier results have been made and good agreements were found. Numerical results for the velocity, induced magnetic field, temperature profiles, skin friction coefficient, and Nusselt number are presented through graphs and tables for various values of physical parameters. Results predicted that the magnetic parameter with α<1 has the tendency to enhance the heat transfer rate, whereas the reverse trend is seen with α>1. It is also noticed that the rate of heat transfer is a decreasing function of the reciprocal of a magnetic Prandtl number, whereas the opposite phenomenon occurs with the magnitude of the friction factor.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/9402836</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Boundary layer flow ; Coefficient of friction ; Computational fluid dynamics ; Dissipation ; Fluid flow ; Friction factor ; Heat generation ; Heat transfer ; Magnetic fields ; Magnetism ; Magnetohydrodynamics ; Mathematical models ; Newtonian fluids ; Non Newtonian fluids ; Nonlinear equations ; Parameters ; Partial differential equations ; Physical properties ; Prandtl number ; Runge-Kutta method ; Skin friction ; Slip velocity ; Stagnation point ; Stretching ; Temperature profiles</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Mohamed Abd El-Aziz and Ahmed A. Afify.</rights><rights>Copyright © 2018 Mohamed Abd El-Aziz and Ahmed A. Afify. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-de5bef5634a82489c676746ca2107c33e196e132ac34e415392761285f90af773</citedby><cites>FETCH-LOGICAL-c360t-de5bef5634a82489c676746ca2107c33e196e132ac34e415392761285f90af773</cites><orcidid>0000-0002-6284-4044 ; 0000-0002-2062-4801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Tzirtzilakis, Efstratios</contributor><contributor>Efstratios Tzirtzilakis</contributor><creatorcontrib>Abd El Aziz, Mohamed</creatorcontrib><creatorcontrib>Afify, Ahmed A.</creatorcontrib><title>Influences of Slip Velocity and Induced Magnetic Field on MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid over a Stretching Sheet</title><title>Mathematical problems in engineering</title><description>The steady MHD boundary layer flow near the stagnation point over a stretching surface in the presence of the induced magnetic field, viscous dissipation, magnetic dissipation, slip velocity phenomenon, and heat generation/absorption effects has been investigated numerically. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. The governing partial differential equations using appropriate similarity transformations are reduced into a set of nonlinear ordinary differential equations, which are solved numerically using a shooting method with fourth-order Runge-Kutta integration scheme. Comparisons with the earlier results have been made and good agreements were found. Numerical results for the velocity, induced magnetic field, temperature profiles, skin friction coefficient, and Nusselt number are presented through graphs and tables for various values of physical parameters. Results predicted that the magnetic parameter with α<1 has the tendency to enhance the heat transfer rate, whereas the reverse trend is seen with α>1. It is also noticed that the rate of heat transfer is a decreasing function of the reciprocal of a magnetic Prandtl number, whereas the opposite phenomenon occurs with the magnitude of the friction factor.</description><subject>Applied mathematics</subject><subject>Boundary layer flow</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Dissipation</subject><subject>Fluid flow</subject><subject>Friction factor</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Nonlinear equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Prandtl number</subject><subject>Runge-Kutta method</subject><subject>Skin friction</subject><subject>Slip velocity</subject><subject>Stagnation point</subject><subject>Stretching</subject><subject>Temperature profiles</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE9LAzEQxRdRUKs3zxLwqKv5t9ndo1RrC4pCVbwtMTuxKWtSk6ylH8LvbGoFj55mGH7vDe9l2RHB54QUxQXFpLqoOaYVE1vZHikEywvCy-20Y8pzQtnLbrYfwhxjSgpS7WVfE6u7HqyCgJxG084s0DN0Tpm4QtK2aGLbXkGL7uSbhWgUGhnoWuQsuhtfoWlMZxmNs_mDMzaiUeeWP7oxyIgevbRBg19bD2UISTXqepPkn-kok9xDVDNj39B0BhAPsh0tuwCHv3OQPY2uH4fj_Pb-ZjK8vM0VEzjmLRSvoFM6LivKq1qJUpRcKEkJLhVjQGoBhFGpGAdOClbTUhBaFbrGUpclG2QnG9-Fdx89hNjMXe9tetlQXHJc41RVos42lPIuBA-6WXjzLv2qIbhZF96sC29-C0_46QZPeVq5NP_RxxsaEgNa_tEU14IR9g0qu4iJ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Abd El Aziz, Mohamed</creator><creator>Afify, Ahmed A.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6284-4044</orcidid><orcidid>https://orcid.org/0000-0002-2062-4801</orcidid></search><sort><creationdate>20180101</creationdate><title>Influences of Slip Velocity and Induced Magnetic Field on MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid over a Stretching Sheet</title><author>Abd El Aziz, Mohamed ; Afify, Ahmed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-de5bef5634a82489c676746ca2107c33e196e132ac34e415392761285f90af773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Boundary layer flow</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Dissipation</topic><topic>Fluid flow</topic><topic>Friction factor</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Nonlinear equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Prandtl number</topic><topic>Runge-Kutta method</topic><topic>Skin friction</topic><topic>Slip velocity</topic><topic>Stagnation point</topic><topic>Stretching</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abd El Aziz, Mohamed</creatorcontrib><creatorcontrib>Afify, Ahmed A.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abd El Aziz, Mohamed</au><au>Afify, Ahmed A.</au><au>Tzirtzilakis, Efstratios</au><au>Efstratios Tzirtzilakis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of Slip Velocity and Induced Magnetic Field on MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid over a Stretching Sheet</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The steady MHD boundary layer flow near the stagnation point over a stretching surface in the presence of the induced magnetic field, viscous dissipation, magnetic dissipation, slip velocity phenomenon, and heat generation/absorption effects has been investigated numerically. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. The governing partial differential equations using appropriate similarity transformations are reduced into a set of nonlinear ordinary differential equations, which are solved numerically using a shooting method with fourth-order Runge-Kutta integration scheme. Comparisons with the earlier results have been made and good agreements were found. Numerical results for the velocity, induced magnetic field, temperature profiles, skin friction coefficient, and Nusselt number are presented through graphs and tables for various values of physical parameters. Results predicted that the magnetic parameter with α<1 has the tendency to enhance the heat transfer rate, whereas the reverse trend is seen with α>1. It is also noticed that the rate of heat transfer is a decreasing function of the reciprocal of a magnetic Prandtl number, whereas the opposite phenomenon occurs with the magnitude of the friction factor.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/9402836</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6284-4044</orcidid><orcidid>https://orcid.org/0000-0002-2062-4801</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-11 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2074090123 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Applied mathematics Boundary layer flow Coefficient of friction Computational fluid dynamics Dissipation Fluid flow Friction factor Heat generation Heat transfer Magnetic fields Magnetism Magnetohydrodynamics Mathematical models Newtonian fluids Non Newtonian fluids Nonlinear equations Parameters Partial differential equations Physical properties Prandtl number Runge-Kutta method Skin friction Slip velocity Stagnation point Stretching Temperature profiles |
title | Influences of Slip Velocity and Induced Magnetic Field on MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid over a Stretching Sheet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20Slip%20Velocity%20and%20Induced%20Magnetic%20Field%20on%20MHD%20Stagnation-Point%20Flow%20and%20Heat%20Transfer%20of%20Casson%20Fluid%20over%20a%20Stretching%20Sheet&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Abd%20El%20Aziz,%20Mohamed&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/9402836&rft_dat=%3Cproquest_cross%3E2074090123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074090123&rft_id=info:pmid/&rfr_iscdi=true |