Non-flat Ground Detection Based on A Local Descriptor

The detection of road and free space remains challenging for non-flat plane, especially with the varying latitudinal and longitudinal slope or in the case of multi-ground plane. In this paper, we propose a framework of the ground plane detection with stereo vision. The main contribution of this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-06
Hauptverfasser: Wang, Kangru, Qu, Lei, Chen, Lili, Gu, Yuzhang, zhu, DongChen, Zhang, Xiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Kangru
Qu, Lei
Chen, Lili
Gu, Yuzhang
zhu, DongChen
Zhang, Xiaolin
description The detection of road and free space remains challenging for non-flat plane, especially with the varying latitudinal and longitudinal slope or in the case of multi-ground plane. In this paper, we propose a framework of the ground plane detection with stereo vision. The main contribution of this paper is a newly proposed descriptor which is implemented in the disparity image to obtain a disparity texture image. The ground plane regions can be distinguished from their surroundings effectively in the disparity texture image. Because the descriptor is implemented in the local area of the image, it can address well the problem of non-flat plane. And we also present a complete framework to detect the ground plane regions base on the disparity texture image with convolutional neural network architecture.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073989070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073989070</sourcerecordid><originalsourceid>FETCH-proquest_journals_20739890703</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgOxBdj2qV_F-LKfQlpCi0hr-Zzf7PwAK5mYGZBKhBix5o9wIrUMU6cczgokFJURL7Qs8HpRO8Bs-_pxSZr0oiennS0PS1ypE802pUUTRjnhGFDloN20dY_rsn2dn2fH2wO-Mk2pm7CHHxJHXAl2qbliov_ri8cUDQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073989070</pqid></control><display><type>article</type><title>Non-flat Ground Detection Based on A Local Descriptor</title><source>Free E- Journals</source><creator>Wang, Kangru ; Qu, Lei ; Chen, Lili ; Gu, Yuzhang ; zhu, DongChen ; Zhang, Xiaolin</creator><creatorcontrib>Wang, Kangru ; Qu, Lei ; Chen, Lili ; Gu, Yuzhang ; zhu, DongChen ; Zhang, Xiaolin</creatorcontrib><description>The detection of road and free space remains challenging for non-flat plane, especially with the varying latitudinal and longitudinal slope or in the case of multi-ground plane. In this paper, we propose a framework of the ground plane detection with stereo vision. The main contribution of this paper is a newly proposed descriptor which is implemented in the disparity image to obtain a disparity texture image. The ground plane regions can be distinguished from their surroundings effectively in the disparity texture image. Because the descriptor is implemented in the local area of the image, it can address well the problem of non-flat plane. And we also present a complete framework to detect the ground plane regions base on the disparity texture image with convolutional neural network architecture.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Ground plane ; Image detection ; Neural networks ; Product design ; Texture</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Kangru</creatorcontrib><creatorcontrib>Qu, Lei</creatorcontrib><creatorcontrib>Chen, Lili</creatorcontrib><creatorcontrib>Gu, Yuzhang</creatorcontrib><creatorcontrib>zhu, DongChen</creatorcontrib><creatorcontrib>Zhang, Xiaolin</creatorcontrib><title>Non-flat Ground Detection Based on A Local Descriptor</title><title>arXiv.org</title><description>The detection of road and free space remains challenging for non-flat plane, especially with the varying latitudinal and longitudinal slope or in the case of multi-ground plane. In this paper, we propose a framework of the ground plane detection with stereo vision. The main contribution of this paper is a newly proposed descriptor which is implemented in the disparity image to obtain a disparity texture image. The ground plane regions can be distinguished from their surroundings effectively in the disparity texture image. Because the descriptor is implemented in the local area of the image, it can address well the problem of non-flat plane. And we also present a complete framework to detect the ground plane regions base on the disparity texture image with convolutional neural network architecture.</description><subject>Artificial neural networks</subject><subject>Ground plane</subject><subject>Image detection</subject><subject>Neural networks</subject><subject>Product design</subject><subject>Texture</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgOxBdj2qV_F-LKfQlpCi0hr-Zzf7PwAK5mYGZBKhBix5o9wIrUMU6cczgokFJURL7Qs8HpRO8Bs-_pxSZr0oiennS0PS1ypE802pUUTRjnhGFDloN20dY_rsn2dn2fH2wO-Mk2pm7CHHxJHXAl2qbliov_ri8cUDQI</recordid><startdate>20180606</startdate><enddate>20180606</enddate><creator>Wang, Kangru</creator><creator>Qu, Lei</creator><creator>Chen, Lili</creator><creator>Gu, Yuzhang</creator><creator>zhu, DongChen</creator><creator>Zhang, Xiaolin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180606</creationdate><title>Non-flat Ground Detection Based on A Local Descriptor</title><author>Wang, Kangru ; Qu, Lei ; Chen, Lili ; Gu, Yuzhang ; zhu, DongChen ; Zhang, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20739890703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Ground plane</topic><topic>Image detection</topic><topic>Neural networks</topic><topic>Product design</topic><topic>Texture</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kangru</creatorcontrib><creatorcontrib>Qu, Lei</creatorcontrib><creatorcontrib>Chen, Lili</creatorcontrib><creatorcontrib>Gu, Yuzhang</creatorcontrib><creatorcontrib>zhu, DongChen</creatorcontrib><creatorcontrib>Zhang, Xiaolin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kangru</au><au>Qu, Lei</au><au>Chen, Lili</au><au>Gu, Yuzhang</au><au>zhu, DongChen</au><au>Zhang, Xiaolin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Non-flat Ground Detection Based on A Local Descriptor</atitle><jtitle>arXiv.org</jtitle><date>2018-06-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The detection of road and free space remains challenging for non-flat plane, especially with the varying latitudinal and longitudinal slope or in the case of multi-ground plane. In this paper, we propose a framework of the ground plane detection with stereo vision. The main contribution of this paper is a newly proposed descriptor which is implemented in the disparity image to obtain a disparity texture image. The ground plane regions can be distinguished from their surroundings effectively in the disparity texture image. Because the descriptor is implemented in the local area of the image, it can address well the problem of non-flat plane. And we also present a complete framework to detect the ground plane regions base on the disparity texture image with convolutional neural network architecture.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073989070
source Free E- Journals
subjects Artificial neural networks
Ground plane
Image detection
Neural networks
Product design
Texture
title Non-flat Ground Detection Based on A Local Descriptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Non-flat%20Ground%20Detection%20Based%20on%20A%20Local%20Descriptor&rft.jtitle=arXiv.org&rft.au=Wang,%20Kangru&rft.date=2018-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073989070%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073989070&rft_id=info:pmid/&rfr_iscdi=true