Monitoring processes with changing variances
Statistical process control (SPC) has evolved beyond its classical applications in manufacturing to monitoring economic and social phenomena. This extension has required the consideration of autocorrelated and possibly non-stationary time series. Less attention has been paid to the possibility that...
Gespeichert in:
Veröffentlicht in: | International journal of forecasting 2009-07, Vol.25 (3), p.518-525 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Statistical process control (SPC) has evolved beyond its classical applications in manufacturing to monitoring economic and social phenomena. This extension has required the consideration of autocorrelated and possibly non-stationary time series. Less attention has been paid to the possibility that the variance of the process may also change over time. In this paper we use the innovations state space modeling framework to develop conditionally heteroscedastic models. We provide examples to show that the incorrect use of homoscedastic models may lead to erroneous decisions about the nature of the process. |
---|---|
ISSN: | 0169-2070 1872-8200 |
DOI: | 10.1016/j.ijforecast.2009.05.026 |