Martingale decomposition of a \(L^2\) space with nonlinear stochastic integrals
This paper presents a generalization of the Kunita-Watanabe decomposition of a \(L^2\) space with nonlinear stochastic integrals where the integrator is a family of continuous martingales bounded in \(L^2\). To get the result, a useful relation between the regularity of the martingale family respect...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Simard, Clarence |
description | This paper presents a generalization of the Kunita-Watanabe decomposition of a \(L^2\) space with nonlinear stochastic integrals where the integrator is a family of continuous martingales bounded in \(L^2\). To get the result, a useful relation between the regularity of the martingale family respect to its parameter and the regularity of the integrand in its martingale decomposition is shown.The decomposition presented in the main result is also the solution of an optimization problem in \(L^2\). Finally, an example is given where the optimization problem is solved explicitely. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073917267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073917267</sourcerecordid><originalsourceid>FETCH-proquest_journals_20739172673</originalsourceid><addsrcrecordid>eNqNjrEKwjAUAIMgWLT_8MBFh0KaWKuzKA6Ki2OxhJi2KTWv5qX4-3bwA5xuuBtuwiIhZZrsNkLMWEzUcs7FNhdZJiN2uyofrKtVZ-BpNL56JBssOsAKFBSry0MUa6BeaQMfGxpw6DrrjPJAAXWjKFgN1gVTe9XRgk2rESb-cc6Wp-P9cE56j-_BUChbHLwbVSl4LvdpPq7I_6ov-yM-dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073917267</pqid></control><display><type>article</type><title>Martingale decomposition of a \(L^2\) space with nonlinear stochastic integrals</title><source>Free E- Journals</source><creator>Simard, Clarence</creator><creatorcontrib>Simard, Clarence</creatorcontrib><description>This paper presents a generalization of the Kunita-Watanabe decomposition of a \(L^2\) space with nonlinear stochastic integrals where the integrator is a family of continuous martingales bounded in \(L^2\). To get the result, a useful relation between the regularity of the martingale family respect to its parameter and the regularity of the integrand in its martingale decomposition is shown.The decomposition presented in the main result is also the solution of an optimization problem in \(L^2\). Finally, an example is given where the optimization problem is solved explicitely.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decomposition ; Integrals ; Martingales ; Optimization ; Regularity</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Simard, Clarence</creatorcontrib><title>Martingale decomposition of a \(L^2\) space with nonlinear stochastic integrals</title><title>arXiv.org</title><description>This paper presents a generalization of the Kunita-Watanabe decomposition of a \(L^2\) space with nonlinear stochastic integrals where the integrator is a family of continuous martingales bounded in \(L^2\). To get the result, a useful relation between the regularity of the martingale family respect to its parameter and the regularity of the integrand in its martingale decomposition is shown.The decomposition presented in the main result is also the solution of an optimization problem in \(L^2\). Finally, an example is given where the optimization problem is solved explicitely.</description><subject>Decomposition</subject><subject>Integrals</subject><subject>Martingales</subject><subject>Optimization</subject><subject>Regularity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjrEKwjAUAIMgWLT_8MBFh0KaWKuzKA6Ki2OxhJi2KTWv5qX4-3bwA5xuuBtuwiIhZZrsNkLMWEzUcs7FNhdZJiN2uyofrKtVZ-BpNL56JBssOsAKFBSry0MUa6BeaQMfGxpw6DrrjPJAAXWjKFgN1gVTe9XRgk2rESb-cc6Wp-P9cE56j-_BUChbHLwbVSl4LvdpPq7I_6ov-yM-dA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Simard, Clarence</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Martingale decomposition of a \(L^2\) space with nonlinear stochastic integrals</title><author>Simard, Clarence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20739172673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decomposition</topic><topic>Integrals</topic><topic>Martingales</topic><topic>Optimization</topic><topic>Regularity</topic><toplevel>online_resources</toplevel><creatorcontrib>Simard, Clarence</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simard, Clarence</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Martingale decomposition of a \(L^2\) space with nonlinear stochastic integrals</atitle><jtitle>arXiv.org</jtitle><date>2019-10-01</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This paper presents a generalization of the Kunita-Watanabe decomposition of a \(L^2\) space with nonlinear stochastic integrals where the integrator is a family of continuous martingales bounded in \(L^2\). To get the result, a useful relation between the regularity of the martingale family respect to its parameter and the regularity of the integrand in its martingale decomposition is shown.The decomposition presented in the main result is also the solution of an optimization problem in \(L^2\). Finally, an example is given where the optimization problem is solved explicitely.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073917267 |
source | Free E- Journals |
subjects | Decomposition Integrals Martingales Optimization Regularity |
title | Martingale decomposition of a \(L^2\) space with nonlinear stochastic integrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Martingale%20decomposition%20of%20a%20%5C(L%5E2%5C)%20space%20with%20nonlinear%20stochastic%20integrals&rft.jtitle=arXiv.org&rft.au=Simard,%20Clarence&rft.date=2019-10-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073917267%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073917267&rft_id=info:pmid/&rfr_iscdi=true |