Brakke's inequality for the thresholding scheme
We continue our analysis of the thresholding scheme from the variational viewpoint and prove a conditional convergence result towards Brakke's notion of mean curvature flow. Our proof is based on a localized version of the minimizing movements interpretation of Esedoğlu and the second author. W...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We continue our analysis of the thresholding scheme from the variational viewpoint and prove a conditional convergence result towards Brakke's notion of mean curvature flow. Our proof is based on a localized version of the minimizing movements interpretation of Esedoğlu and the second author. We apply De Giorgi's variational interpolation to the thresholding scheme and pass to the limit in the resulting energy-dissipation inequality. The result is conditional in the sense that we assume the time-integrated energies of the approximations to converge to those of the limit. |
---|---|
ISSN: | 2331-8422 |