CuisineNet: Food Attributes Classification using Multi-scale Convolution Network
Diversity of food and its attributes represents the culinary habits of peoples from different countries. Thus, this paper addresses the problem of identifying food culture of people around the world and its flavor by classifying two main food attributes, cuisine and flavor. A deep learning model bas...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-06 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Md Mostafa Kamal Sarker Jabreel, Mohammed Rashwan, Hatem A Banu, Syeda Furruka Moreno, Antonio Radeva, Petia Puig, Domenec |
description | Diversity of food and its attributes represents the culinary habits of peoples from different countries. Thus, this paper addresses the problem of identifying food culture of people around the world and its flavor by classifying two main food attributes, cuisine and flavor. A deep learning model based on multi-scale convotuional networks is proposed for extracting more accurate features from input images. The aggregation of multi-scale convolution layers with different kernel size is also used for weighting the features results from different scales. In addition, a joint loss function based on Negative Log Likelihood (NLL) is used to fit the model probability to multi labeled classes for multi-modal classification task. Furthermore, this work provides a new dataset for food attributes, so-called Yummly48K, extracted from the popular food website, Yummly. Our model is assessed on the constructed Yummly48K dataset. The experimental results show that our proposed method yields 65% and 62% average F1 score on validation and test set which outperforming the state-of-the-art models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073848152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073848152</sourcerecordid><originalsourceid>FETCH-proquest_journals_20738481523</originalsourceid><addsrcrecordid>eNqNjLEKwjAUAIMgWLT_EHAupElri5sEi4vi4F7SmkpqyNO8RH_fIn6A0w133IwkXIg8qwvOFyRFHBljfFPxshQJOcto0Dh90mFLG4Ar3YXgTReDRiqtQjSD6VUw4Gicwhs9RhtMhr2ymkpwL7Dxa6fDG_x9ReaDsqjTH5dk3ewv8pA9PDyjxtCOEL2bVMtZJeqizksu_qs-m8I_gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073848152</pqid></control><display><type>article</type><title>CuisineNet: Food Attributes Classification using Multi-scale Convolution Network</title><source>Free E- Journals</source><creator>Md Mostafa Kamal Sarker ; Jabreel, Mohammed ; Rashwan, Hatem A ; Banu, Syeda Furruka ; Moreno, Antonio ; Radeva, Petia ; Puig, Domenec</creator><creatorcontrib>Md Mostafa Kamal Sarker ; Jabreel, Mohammed ; Rashwan, Hatem A ; Banu, Syeda Furruka ; Moreno, Antonio ; Radeva, Petia ; Puig, Domenec</creatorcontrib><description>Diversity of food and its attributes represents the culinary habits of peoples from different countries. Thus, this paper addresses the problem of identifying food culture of people around the world and its flavor by classifying two main food attributes, cuisine and flavor. A deep learning model based on multi-scale convotuional networks is proposed for extracting more accurate features from input images. The aggregation of multi-scale convolution layers with different kernel size is also used for weighting the features results from different scales. In addition, a joint loss function based on Negative Log Likelihood (NLL) is used to fit the model probability to multi labeled classes for multi-modal classification task. Furthermore, this work provides a new dataset for food attributes, so-called Yummly48K, extracted from the popular food website, Yummly. Our model is assessed on the constructed Yummly48K dataset. The experimental results show that our proposed method yields 65% and 62% average F1 score on validation and test set which outperforming the state-of-the-art models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Convolution ; Feature extraction ; Flavors ; Food ; Machine learning ; Websites</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Md Mostafa Kamal Sarker</creatorcontrib><creatorcontrib>Jabreel, Mohammed</creatorcontrib><creatorcontrib>Rashwan, Hatem A</creatorcontrib><creatorcontrib>Banu, Syeda Furruka</creatorcontrib><creatorcontrib>Moreno, Antonio</creatorcontrib><creatorcontrib>Radeva, Petia</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><title>CuisineNet: Food Attributes Classification using Multi-scale Convolution Network</title><title>arXiv.org</title><description>Diversity of food and its attributes represents the culinary habits of peoples from different countries. Thus, this paper addresses the problem of identifying food culture of people around the world and its flavor by classifying two main food attributes, cuisine and flavor. A deep learning model based on multi-scale convotuional networks is proposed for extracting more accurate features from input images. The aggregation of multi-scale convolution layers with different kernel size is also used for weighting the features results from different scales. In addition, a joint loss function based on Negative Log Likelihood (NLL) is used to fit the model probability to multi labeled classes for multi-modal classification task. Furthermore, this work provides a new dataset for food attributes, so-called Yummly48K, extracted from the popular food website, Yummly. Our model is assessed on the constructed Yummly48K dataset. The experimental results show that our proposed method yields 65% and 62% average F1 score on validation and test set which outperforming the state-of-the-art models.</description><subject>Classification</subject><subject>Convolution</subject><subject>Feature extraction</subject><subject>Flavors</subject><subject>Food</subject><subject>Machine learning</subject><subject>Websites</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLEKwjAUAIMgWLT_EHAupElri5sEi4vi4F7SmkpqyNO8RH_fIn6A0w133IwkXIg8qwvOFyRFHBljfFPxshQJOcto0Dh90mFLG4Ar3YXgTReDRiqtQjSD6VUw4Gicwhs9RhtMhr2ymkpwL7Dxa6fDG_x9ReaDsqjTH5dk3ewv8pA9PDyjxtCOEL2bVMtZJeqizksu_qs-m8I_gQ</recordid><startdate>20180608</startdate><enddate>20180608</enddate><creator>Md Mostafa Kamal Sarker</creator><creator>Jabreel, Mohammed</creator><creator>Rashwan, Hatem A</creator><creator>Banu, Syeda Furruka</creator><creator>Moreno, Antonio</creator><creator>Radeva, Petia</creator><creator>Puig, Domenec</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180608</creationdate><title>CuisineNet: Food Attributes Classification using Multi-scale Convolution Network</title><author>Md Mostafa Kamal Sarker ; Jabreel, Mohammed ; Rashwan, Hatem A ; Banu, Syeda Furruka ; Moreno, Antonio ; Radeva, Petia ; Puig, Domenec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20738481523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>Feature extraction</topic><topic>Flavors</topic><topic>Food</topic><topic>Machine learning</topic><topic>Websites</topic><toplevel>online_resources</toplevel><creatorcontrib>Md Mostafa Kamal Sarker</creatorcontrib><creatorcontrib>Jabreel, Mohammed</creatorcontrib><creatorcontrib>Rashwan, Hatem A</creatorcontrib><creatorcontrib>Banu, Syeda Furruka</creatorcontrib><creatorcontrib>Moreno, Antonio</creatorcontrib><creatorcontrib>Radeva, Petia</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Md Mostafa Kamal Sarker</au><au>Jabreel, Mohammed</au><au>Rashwan, Hatem A</au><au>Banu, Syeda Furruka</au><au>Moreno, Antonio</au><au>Radeva, Petia</au><au>Puig, Domenec</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CuisineNet: Food Attributes Classification using Multi-scale Convolution Network</atitle><jtitle>arXiv.org</jtitle><date>2018-06-08</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Diversity of food and its attributes represents the culinary habits of peoples from different countries. Thus, this paper addresses the problem of identifying food culture of people around the world and its flavor by classifying two main food attributes, cuisine and flavor. A deep learning model based on multi-scale convotuional networks is proposed for extracting more accurate features from input images. The aggregation of multi-scale convolution layers with different kernel size is also used for weighting the features results from different scales. In addition, a joint loss function based on Negative Log Likelihood (NLL) is used to fit the model probability to multi labeled classes for multi-modal classification task. Furthermore, this work provides a new dataset for food attributes, so-called Yummly48K, extracted from the popular food website, Yummly. Our model is assessed on the constructed Yummly48K dataset. The experimental results show that our proposed method yields 65% and 62% average F1 score on validation and test set which outperforming the state-of-the-art models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073848152 |
source | Free E- Journals |
subjects | Classification Convolution Feature extraction Flavors Food Machine learning Websites |
title | CuisineNet: Food Attributes Classification using Multi-scale Convolution Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CuisineNet:%20Food%20Attributes%20Classification%20using%20Multi-scale%20Convolution%20Network&rft.jtitle=arXiv.org&rft.au=Md%20Mostafa%20Kamal%20Sarker&rft.date=2018-06-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073848152%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073848152&rft_id=info:pmid/&rfr_iscdi=true |