Internal characterization of Brezis -- Lieb spaces

In order to find an extension of Brezis -- Lieb's lemma to the case of nets, we replace the almost everywhere convergence by the unbounded order convergence and introduce the Brezis -- Lieb property in normed lattices. Then we identify a wide class of Banach lattices in which the Brezis -- Lieb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-07
Hauptverfasser: Emelyanov, Eduard, Marabeh, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Emelyanov, Eduard
Marabeh, Mohammad
description In order to find an extension of Brezis -- Lieb's lemma to the case of nets, we replace the almost everywhere convergence by the unbounded order convergence and introduce the Brezis -- Lieb property in normed lattices. Then we identify a wide class of Banach lattices in which the Brezis -- Lieb lemma holds true. Among other things, it gives an extension of the Brezis -- Lieb lemma for nets in \(L^p\) for \(p\in [1,\infty)\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073831216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073831216</sourcerecordid><originalsourceid>FETCH-proquest_journals_20738312163</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8swrSS3KS8xRSM5ILEpMBnIyqxJLMvPzFPLTFJyKUqsyixV0dRV8MlOTFIoLEpNTi3kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn4pyMjieCMDc2MLY0MjQzNj4lQBAKxpMzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073831216</pqid></control><display><type>article</type><title>Internal characterization of Brezis -- Lieb spaces</title><source>Free E- Journals</source><creator>Emelyanov, Eduard ; Marabeh, Mohammad</creator><creatorcontrib>Emelyanov, Eduard ; Marabeh, Mohammad</creatorcontrib><description>In order to find an extension of Brezis -- Lieb's lemma to the case of nets, we replace the almost everywhere convergence by the unbounded order convergence and introduce the Brezis -- Lieb property in normed lattices. Then we identify a wide class of Banach lattices in which the Brezis -- Lieb lemma holds true. Among other things, it gives an extension of the Brezis -- Lieb lemma for nets in \(L^p\) for \(p\in [1,\infty)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Lattices (mathematics)</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Emelyanov, Eduard</creatorcontrib><creatorcontrib>Marabeh, Mohammad</creatorcontrib><title>Internal characterization of Brezis -- Lieb spaces</title><title>arXiv.org</title><description>In order to find an extension of Brezis -- Lieb's lemma to the case of nets, we replace the almost everywhere convergence by the unbounded order convergence and introduce the Brezis -- Lieb property in normed lattices. Then we identify a wide class of Banach lattices in which the Brezis -- Lieb lemma holds true. Among other things, it gives an extension of the Brezis -- Lieb lemma for nets in \(L^p\) for \(p\in [1,\infty)\).</description><subject>Convergence</subject><subject>Lattices (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8swrSS3KS8xRSM5ILEpMBnIyqxJLMvPzFPLTFJyKUqsyixV0dRV8MlOTFIoLEpNTi3kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn4pyMjieCMDc2MLY0MjQzNj4lQBAKxpMzo</recordid><startdate>20180704</startdate><enddate>20180704</enddate><creator>Emelyanov, Eduard</creator><creator>Marabeh, Mohammad</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180704</creationdate><title>Internal characterization of Brezis -- Lieb spaces</title><author>Emelyanov, Eduard ; Marabeh, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20738312163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convergence</topic><topic>Lattices (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Emelyanov, Eduard</creatorcontrib><creatorcontrib>Marabeh, Mohammad</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emelyanov, Eduard</au><au>Marabeh, Mohammad</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Internal characterization of Brezis -- Lieb spaces</atitle><jtitle>arXiv.org</jtitle><date>2018-07-04</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In order to find an extension of Brezis -- Lieb's lemma to the case of nets, we replace the almost everywhere convergence by the unbounded order convergence and introduce the Brezis -- Lieb property in normed lattices. Then we identify a wide class of Banach lattices in which the Brezis -- Lieb lemma holds true. Among other things, it gives an extension of the Brezis -- Lieb lemma for nets in \(L^p\) for \(p\in [1,\infty)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073831216
source Free E- Journals
subjects Convergence
Lattices (mathematics)
title Internal characterization of Brezis -- Lieb spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Internal%20characterization%20of%20Brezis%20--%20Lieb%20spaces&rft.jtitle=arXiv.org&rft.au=Emelyanov,%20Eduard&rft.date=2018-07-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073831216%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073831216&rft_id=info:pmid/&rfr_iscdi=true