Internal characterization of Brezis -- Lieb spaces
In order to find an extension of Brezis -- Lieb's lemma to the case of nets, we replace the almost everywhere convergence by the unbounded order convergence and introduce the Brezis -- Lieb property in normed lattices. Then we identify a wide class of Banach lattices in which the Brezis -- Lieb...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to find an extension of Brezis -- Lieb's lemma to the case of nets, we replace the almost everywhere convergence by the unbounded order convergence and introduce the Brezis -- Lieb property in normed lattices. Then we identify a wide class of Banach lattices in which the Brezis -- Lieb lemma holds true. Among other things, it gives an extension of the Brezis -- Lieb lemma for nets in \(L^p\) for \(p\in [1,\infty)\). |
---|---|
ISSN: | 2331-8422 |