Stein Points
An important task in computational statistics and machine learning is to approximate a posterior distribution \(p(x)\) with an empirical measure supported on a set of representative points \(\{x_i\}_{i=1}^n\). This paper focuses on methods where the selection of points is essentially deterministic,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wilson Ye Chen Mackey, Lester Gorham, Jackson François-Xavier Briol Oates, Chris J |
description | An important task in computational statistics and machine learning is to approximate a posterior distribution \(p(x)\) with an empirical measure supported on a set of representative points \(\{x_i\}_{i=1}^n\). This paper focuses on methods where the selection of points is essentially deterministic, with an emphasis on achieving accurate approximation when \(n\) is small. To this end, we present `Stein Points'. The idea is to exploit either a greedy or a conditional gradient method to iteratively minimise a kernel Stein discrepancy between the empirical measure and \(p(x)\). Our empirical results demonstrate that Stein Points enable accurate approximation of the posterior at modest computational cost. In addition, theoretical results are provided to establish convergence of the method. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073821874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073821874</sourcerecordid><originalsourceid>FETCH-proquest_journals_20738218743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTgCS5JzcxTCMjPzCsp5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc2MLI0MLcxNj4lQBACbsJYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073821874</pqid></control><display><type>article</type><title>Stein Points</title><source>Free E- Journals</source><creator>Wilson Ye Chen ; Mackey, Lester ; Gorham, Jackson ; François-Xavier Briol ; Oates, Chris J</creator><creatorcontrib>Wilson Ye Chen ; Mackey, Lester ; Gorham, Jackson ; François-Xavier Briol ; Oates, Chris J</creatorcontrib><description>An important task in computational statistics and machine learning is to approximate a posterior distribution \(p(x)\) with an empirical measure supported on a set of representative points \(\{x_i\}_{i=1}^n\). This paper focuses on methods where the selection of points is essentially deterministic, with an emphasis on achieving accurate approximation when \(n\) is small. To this end, we present `Stein Points'. The idea is to exploit either a greedy or a conditional gradient method to iteratively minimise a kernel Stein discrepancy between the empirical measure and \(p(x)\). Our empirical results demonstrate that Stein Points enable accurate approximation of the posterior at modest computational cost. In addition, theoretical results are provided to establish convergence of the method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Machine learning ; Mathematical analysis</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wilson Ye Chen</creatorcontrib><creatorcontrib>Mackey, Lester</creatorcontrib><creatorcontrib>Gorham, Jackson</creatorcontrib><creatorcontrib>François-Xavier Briol</creatorcontrib><creatorcontrib>Oates, Chris J</creatorcontrib><title>Stein Points</title><title>arXiv.org</title><description>An important task in computational statistics and machine learning is to approximate a posterior distribution \(p(x)\) with an empirical measure supported on a set of representative points \(\{x_i\}_{i=1}^n\). This paper focuses on methods where the selection of points is essentially deterministic, with an emphasis on achieving accurate approximation when \(n\) is small. To this end, we present `Stein Points'. The idea is to exploit either a greedy or a conditional gradient method to iteratively minimise a kernel Stein discrepancy between the empirical measure and \(p(x)\). Our empirical results demonstrate that Stein Points enable accurate approximation of the posterior at modest computational cost. In addition, theoretical results are provided to establish convergence of the method.</description><subject>Approximation</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTgCS5JzcxTCMjPzCsp5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc2MLI0MLcxNj4lQBACbsJYU</recordid><startdate>20180619</startdate><enddate>20180619</enddate><creator>Wilson Ye Chen</creator><creator>Mackey, Lester</creator><creator>Gorham, Jackson</creator><creator>François-Xavier Briol</creator><creator>Oates, Chris J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180619</creationdate><title>Stein Points</title><author>Wilson Ye Chen ; Mackey, Lester ; Gorham, Jackson ; François-Xavier Briol ; Oates, Chris J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20738218743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilson Ye Chen</creatorcontrib><creatorcontrib>Mackey, Lester</creatorcontrib><creatorcontrib>Gorham, Jackson</creatorcontrib><creatorcontrib>François-Xavier Briol</creatorcontrib><creatorcontrib>Oates, Chris J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson Ye Chen</au><au>Mackey, Lester</au><au>Gorham, Jackson</au><au>François-Xavier Briol</au><au>Oates, Chris J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stein Points</atitle><jtitle>arXiv.org</jtitle><date>2018-06-19</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>An important task in computational statistics and machine learning is to approximate a posterior distribution \(p(x)\) with an empirical measure supported on a set of representative points \(\{x_i\}_{i=1}^n\). This paper focuses on methods where the selection of points is essentially deterministic, with an emphasis on achieving accurate approximation when \(n\) is small. To this end, we present `Stein Points'. The idea is to exploit either a greedy or a conditional gradient method to iteratively minimise a kernel Stein discrepancy between the empirical measure and \(p(x)\). Our empirical results demonstrate that Stein Points enable accurate approximation of the posterior at modest computational cost. In addition, theoretical results are provided to establish convergence of the method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073821874 |
source | Free E- Journals |
subjects | Approximation Machine learning Mathematical analysis |
title | Stein Points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stein%20Points&rft.jtitle=arXiv.org&rft.au=Wilson%20Ye%20Chen&rft.date=2018-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073821874%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073821874&rft_id=info:pmid/&rfr_iscdi=true |