Optimal error and GMDH predictors: A comparison with some statistical techniques
This paper presents some results obtained in time series forecasting using two nonstandard approaches and compares them with those obtained by usual statistical techniques. In particular, a new method based on recent results of the General Theory of Optimal Algorithm is considered. This method may b...
Gespeichert in:
Veröffentlicht in: | International journal of forecasting 1987, Vol.3 (2), p.313-328 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 2 |
container_start_page | 313 |
container_title | International journal of forecasting |
container_volume | 3 |
creator | Vicino, A. Tempo, R. Genesio, R. Milanese, M. |
description | This paper presents some results obtained in time series forecasting using two nonstandard approaches and compares them with those obtained by usual statistical techniques. In particular, a new method based on recent results of the General Theory of Optimal Algorithm is considered. This method may be useful when no reliable statistical hypotheses can be made or when a limited number of observations is available. Moreover, a nonlinear modelling technique based on Group Method of Data Handling (GMDH) is also considered to derive forecasts. The well-known Wolf Sunspot Numbers and Annual Canadian Lynx Trappings series are analyzed; the Optimal Error Predictor is also applied to a recently published demographic series on Australian Births. The reported results show that the Optimal Error and GMDH predictors provide accurate one step ahead forecasts with respect to those obtained by some linear and nonlinear statistical models. Furthermore, the Optimal Error Predictor shows very good performances in multistep forecasting. |
doi_str_mv | 10.1016/0169-2070(87)90012-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_journals_207378999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0169207087900124</els_id><sourcerecordid>1121398</sourcerecordid><originalsourceid>FETCH-LOGICAL-e331t-db21e95ee9ac495632e6e98897c9c7b54cb33c8e0f8f3a185bddd1c1fd2c00253</originalsourceid><addsrcrecordid>eNp1UbtOxDAQtBBIHAd_QGFBA0XAj-RiUyCdeEugo4DaSpyNzojEwTaH7u_ZcIiOYrTFzs7uzhByyNkZZ3x2jtCZYCU7UeWpZoyLLN8iE65KkSnB2DaZ_FF2yV6Mb4yxouR8Qp4XQ3Jd9U4hBB9o1Tf07un6ng4BGmeTD_GCzqn13VAFF31Pv1xa0ug7oDFVycXkLE4nsMvefXxC3Cc7bfUe4eC3Tsnr7c3L1X32uLh7uJo_ZiAlT1lTCw66ANCVzXUxkwJmoJXSpdW2rIvc1lJaBaxVray4KuqmabjlbSMsY6KQU3K00R2CH_cm8-Y_Q48rDb4pS6W1RtLxfyQu0QEtc6mQ9bBhBRjAmiGgIWFtAMD1qfXBrIysJGKN4FqVWBxCIIaxxbEplFmmDrUuN1qAv68cBBOtg96imwFsMo13hjMzxmbGTMZjmUHJn9hMLr8Bb_6KVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1305793438</pqid></control><display><type>article</type><title>Optimal error and GMDH predictors: A comparison with some statistical techniques</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><source>Periodicals Index Online</source><creator>Vicino, A. ; Tempo, R. ; Genesio, R. ; Milanese, M.</creator><creatorcontrib>Vicino, A. ; Tempo, R. ; Genesio, R. ; Milanese, M.</creatorcontrib><description>This paper presents some results obtained in time series forecasting using two nonstandard approaches and compares them with those obtained by usual statistical techniques. In particular, a new method based on recent results of the General Theory of Optimal Algorithm is considered. This method may be useful when no reliable statistical hypotheses can be made or when a limited number of observations is available. Moreover, a nonlinear modelling technique based on Group Method of Data Handling (GMDH) is also considered to derive forecasts. The well-known Wolf Sunspot Numbers and Annual Canadian Lynx Trappings series are analyzed; the Optimal Error Predictor is also applied to a recently published demographic series on Australian Births. The reported results show that the Optimal Error and GMDH predictors provide accurate one step ahead forecasts with respect to those obtained by some linear and nonlinear statistical models. Furthermore, the Optimal Error Predictor shows very good performances in multistep forecasting.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/0169-2070(87)90012-4</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Application ; Comparative methods ; Forecasting techniques ; GMDH ; Lead time ; Mathematical models ; Optimal ; Optimal algorithm ; Predictions ; Procedures ; Statistical methods ; Time series</subject><ispartof>International journal of forecasting, 1987, Vol.3 (2), p.313-328</ispartof><rights>1987</rights><rights>Copyright Elsevier Sequoia S.A. 1987</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0169-2070(87)90012-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,4010,27850,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a3_3ay_3a1987_3ai_3a2_3ap_3a313-328.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Vicino, A.</creatorcontrib><creatorcontrib>Tempo, R.</creatorcontrib><creatorcontrib>Genesio, R.</creatorcontrib><creatorcontrib>Milanese, M.</creatorcontrib><title>Optimal error and GMDH predictors: A comparison with some statistical techniques</title><title>International journal of forecasting</title><description>This paper presents some results obtained in time series forecasting using two nonstandard approaches and compares them with those obtained by usual statistical techniques. In particular, a new method based on recent results of the General Theory of Optimal Algorithm is considered. This method may be useful when no reliable statistical hypotheses can be made or when a limited number of observations is available. Moreover, a nonlinear modelling technique based on Group Method of Data Handling (GMDH) is also considered to derive forecasts. The well-known Wolf Sunspot Numbers and Annual Canadian Lynx Trappings series are analyzed; the Optimal Error Predictor is also applied to a recently published demographic series on Australian Births. The reported results show that the Optimal Error and GMDH predictors provide accurate one step ahead forecasts with respect to those obtained by some linear and nonlinear statistical models. Furthermore, the Optimal Error Predictor shows very good performances in multistep forecasting.</description><subject>Algorithms</subject><subject>Application</subject><subject>Comparative methods</subject><subject>Forecasting techniques</subject><subject>GMDH</subject><subject>Lead time</subject><subject>Mathematical models</subject><subject>Optimal</subject><subject>Optimal algorithm</subject><subject>Predictions</subject><subject>Procedures</subject><subject>Statistical methods</subject><subject>Time series</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>K30</sourceid><recordid>eNp1UbtOxDAQtBBIHAd_QGFBA0XAj-RiUyCdeEugo4DaSpyNzojEwTaH7u_ZcIiOYrTFzs7uzhByyNkZZ3x2jtCZYCU7UeWpZoyLLN8iE65KkSnB2DaZ_FF2yV6Mb4yxouR8Qp4XQ3Jd9U4hBB9o1Tf07un6ng4BGmeTD_GCzqn13VAFF31Pv1xa0ug7oDFVycXkLE4nsMvefXxC3Cc7bfUe4eC3Tsnr7c3L1X32uLh7uJo_ZiAlT1lTCw66ANCVzXUxkwJmoJXSpdW2rIvc1lJaBaxVray4KuqmabjlbSMsY6KQU3K00R2CH_cm8-Y_Q48rDb4pS6W1RtLxfyQu0QEtc6mQ9bBhBRjAmiGgIWFtAMD1qfXBrIysJGKN4FqVWBxCIIaxxbEplFmmDrUuN1qAv68cBBOtg96imwFsMo13hjMzxmbGTMZjmUHJn9hMLr8Bb_6KVg</recordid><startdate>1987</startdate><enddate>1987</enddate><creator>Vicino, A.</creator><creator>Tempo, R.</creator><creator>Genesio, R.</creator><creator>Milanese, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>HNJIA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>1987</creationdate><title>Optimal error and GMDH predictors: A comparison with some statistical techniques</title><author>Vicino, A. ; Tempo, R. ; Genesio, R. ; Milanese, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e331t-db21e95ee9ac495632e6e98897c9c7b54cb33c8e0f8f3a185bddd1c1fd2c00253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Algorithms</topic><topic>Application</topic><topic>Comparative methods</topic><topic>Forecasting techniques</topic><topic>GMDH</topic><topic>Lead time</topic><topic>Mathematical models</topic><topic>Optimal</topic><topic>Optimal algorithm</topic><topic>Predictions</topic><topic>Procedures</topic><topic>Statistical methods</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vicino, A.</creatorcontrib><creatorcontrib>Tempo, R.</creatorcontrib><creatorcontrib>Genesio, R.</creatorcontrib><creatorcontrib>Milanese, M.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>Periodicals Index Online Segment 20</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vicino, A.</au><au>Tempo, R.</au><au>Genesio, R.</au><au>Milanese, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal error and GMDH predictors: A comparison with some statistical techniques</atitle><jtitle>International journal of forecasting</jtitle><date>1987</date><risdate>1987</risdate><volume>3</volume><issue>2</issue><spage>313</spage><epage>328</epage><pages>313-328</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>This paper presents some results obtained in time series forecasting using two nonstandard approaches and compares them with those obtained by usual statistical techniques. In particular, a new method based on recent results of the General Theory of Optimal Algorithm is considered. This method may be useful when no reliable statistical hypotheses can be made or when a limited number of observations is available. Moreover, a nonlinear modelling technique based on Group Method of Data Handling (GMDH) is also considered to derive forecasts. The well-known Wolf Sunspot Numbers and Annual Canadian Lynx Trappings series are analyzed; the Optimal Error Predictor is also applied to a recently published demographic series on Australian Births. The reported results show that the Optimal Error and GMDH predictors provide accurate one step ahead forecasts with respect to those obtained by some linear and nonlinear statistical models. Furthermore, the Optimal Error Predictor shows very good performances in multistep forecasting.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0169-2070(87)90012-4</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2070 |
ispartof | International journal of forecasting, 1987, Vol.3 (2), p.313-328 |
issn | 0169-2070 1872-8200 |
language | eng |
recordid | cdi_proquest_journals_207378999 |
source | RePEc; Elsevier ScienceDirect Journals; Periodicals Index Online |
subjects | Algorithms Application Comparative methods Forecasting techniques GMDH Lead time Mathematical models Optimal Optimal algorithm Predictions Procedures Statistical methods Time series |
title | Optimal error and GMDH predictors: A comparison with some statistical techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20error%20and%20GMDH%20predictors:%20A%20comparison%20with%20some%20statistical%20techniques&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Vicino,%20A.&rft.date=1987&rft.volume=3&rft.issue=2&rft.spage=313&rft.epage=328&rft.pages=313-328&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/0169-2070(87)90012-4&rft_dat=%3Cproquest_repec%3E1121398%3C/proquest_repec%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1305793438&rft_id=info:pmid/&rft_els_id=0169207087900124&rfr_iscdi=true |