A Stratonovich-Skorohod integral formula for Volterra Gaussian rough paths
Given a solution \(Y\) to a rough differential equation (RDE), a recent result [8] extends the classical It\"{o}-Stratonovich formula and provides a closed-form expression for \(\int Y \circ \mathrm{d} \mathbf{X} - \int Y \, \mathrm{d} X\), i.e. the difference between the rough and Skorohod int...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cass, Thomas Lim, Nengli |
description | Given a solution \(Y\) to a rough differential equation (RDE), a recent result [8] extends the classical It\"{o}-Stratonovich formula and provides a closed-form expression for \(\int Y \circ \mathrm{d} \mathbf{X} - \int Y \, \mathrm{d} X\), i.e. the difference between the rough and Skorohod integrals of \(Y\) with respect to \(X\), where \(X\) is a Gaussian process with finite \(p\)-variation less than 3. In this paper, we extend this result to Gaussian processes with finite \(p\)-variation such that \(3 \leq p < 4\). The constraint this time is that we restrict ourselves to Volterra Gaussian processes with kernels satisfying a natural condition, which however still allows the result to encompass many standard examples, including fractional Brownian motion with \(H > \frac{1}{4}\). Analogously to [8], we first show that the Riemann-sum approximants of the Skorohod integral converge in \(L^2(\Omega)\) by adopting a suitable characterization of the Cameron-Martin norm, before appending the approximants with higher-level compensation terms without altering the limit. Lastly, the formula is obtained after a re-balancing of terms, and we also show how to recover the standard It\"{o} formulas in the case where the vector fields of the RDE governing \(Y\) are commutative. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073768480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073768480</sourcerecordid><originalsourceid>FETCH-proquest_journals_20737684803</originalsourceid><addsrcrecordid>eNqNyssKwjAQQNEgCBbtPwRcF2LS11bEB24rbmXQtGmNmTpJ_H4V_ABXZ3HvhCVSqVVW51LOWOr9IISQZSWLQiXsuOZNIAjo8NVfTdbckdDgjfcu6I7A8hbpES185We0QRMB30P0vgfHCWNn-AjB-AWbtmC9Tn_O2XK3PW0O2Uj4jNqHy4CR3CddpKhUVdZ5LdR_1xsGWj1G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073768480</pqid></control><display><type>article</type><title>A Stratonovich-Skorohod integral formula for Volterra Gaussian rough paths</title><source>Free E- Journals</source><creator>Cass, Thomas ; Lim, Nengli</creator><creatorcontrib>Cass, Thomas ; Lim, Nengli</creatorcontrib><description>Given a solution \(Y\) to a rough differential equation (RDE), a recent result [8] extends the classical It\"{o}-Stratonovich formula and provides a closed-form expression for \(\int Y \circ \mathrm{d} \mathbf{X} - \int Y \, \mathrm{d} X\), i.e. the difference between the rough and Skorohod integrals of \(Y\) with respect to \(X\), where \(X\) is a Gaussian process with finite \(p\)-variation less than 3. In this paper, we extend this result to Gaussian processes with finite \(p\)-variation such that \(3 \leq p < 4\). The constraint this time is that we restrict ourselves to Volterra Gaussian processes with kernels satisfying a natural condition, which however still allows the result to encompass many standard examples, including fractional Brownian motion with \(H > \frac{1}{4}\). Analogously to [8], we first show that the Riemann-sum approximants of the Skorohod integral converge in \(L^2(\Omega)\) by adopting a suitable characterization of the Cameron-Martin norm, before appending the approximants with higher-level compensation terms without altering the limit. Lastly, the formula is obtained after a re-balancing of terms, and we also show how to recover the standard It\"{o} formulas in the case where the vector fields of the RDE governing \(Y\) are commutative.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximants ; Brownian motion ; Differential equations ; Fields (mathematics) ; Gaussian process ; Integrals</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cass, Thomas</creatorcontrib><creatorcontrib>Lim, Nengli</creatorcontrib><title>A Stratonovich-Skorohod integral formula for Volterra Gaussian rough paths</title><title>arXiv.org</title><description>Given a solution \(Y\) to a rough differential equation (RDE), a recent result [8] extends the classical It\"{o}-Stratonovich formula and provides a closed-form expression for \(\int Y \circ \mathrm{d} \mathbf{X} - \int Y \, \mathrm{d} X\), i.e. the difference between the rough and Skorohod integrals of \(Y\) with respect to \(X\), where \(X\) is a Gaussian process with finite \(p\)-variation less than 3. In this paper, we extend this result to Gaussian processes with finite \(p\)-variation such that \(3 \leq p < 4\). The constraint this time is that we restrict ourselves to Volterra Gaussian processes with kernels satisfying a natural condition, which however still allows the result to encompass many standard examples, including fractional Brownian motion with \(H > \frac{1}{4}\). Analogously to [8], we first show that the Riemann-sum approximants of the Skorohod integral converge in \(L^2(\Omega)\) by adopting a suitable characterization of the Cameron-Martin norm, before appending the approximants with higher-level compensation terms without altering the limit. Lastly, the formula is obtained after a re-balancing of terms, and we also show how to recover the standard It\"{o} formulas in the case where the vector fields of the RDE governing \(Y\) are commutative.</description><subject>Approximants</subject><subject>Brownian motion</subject><subject>Differential equations</subject><subject>Fields (mathematics)</subject><subject>Gaussian process</subject><subject>Integrals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyssKwjAQQNEgCBbtPwRcF2LS11bEB24rbmXQtGmNmTpJ_H4V_ABXZ3HvhCVSqVVW51LOWOr9IISQZSWLQiXsuOZNIAjo8NVfTdbckdDgjfcu6I7A8hbpES185We0QRMB30P0vgfHCWNn-AjB-AWbtmC9Tn_O2XK3PW0O2Uj4jNqHy4CR3CddpKhUVdZ5LdR_1xsGWj1G</recordid><startdate>20180606</startdate><enddate>20180606</enddate><creator>Cass, Thomas</creator><creator>Lim, Nengli</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180606</creationdate><title>A Stratonovich-Skorohod integral formula for Volterra Gaussian rough paths</title><author>Cass, Thomas ; Lim, Nengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20737684803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximants</topic><topic>Brownian motion</topic><topic>Differential equations</topic><topic>Fields (mathematics)</topic><topic>Gaussian process</topic><topic>Integrals</topic><toplevel>online_resources</toplevel><creatorcontrib>Cass, Thomas</creatorcontrib><creatorcontrib>Lim, Nengli</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cass, Thomas</au><au>Lim, Nengli</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Stratonovich-Skorohod integral formula for Volterra Gaussian rough paths</atitle><jtitle>arXiv.org</jtitle><date>2018-06-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Given a solution \(Y\) to a rough differential equation (RDE), a recent result [8] extends the classical It\"{o}-Stratonovich formula and provides a closed-form expression for \(\int Y \circ \mathrm{d} \mathbf{X} - \int Y \, \mathrm{d} X\), i.e. the difference between the rough and Skorohod integrals of \(Y\) with respect to \(X\), where \(X\) is a Gaussian process with finite \(p\)-variation less than 3. In this paper, we extend this result to Gaussian processes with finite \(p\)-variation such that \(3 \leq p < 4\). The constraint this time is that we restrict ourselves to Volterra Gaussian processes with kernels satisfying a natural condition, which however still allows the result to encompass many standard examples, including fractional Brownian motion with \(H > \frac{1}{4}\). Analogously to [8], we first show that the Riemann-sum approximants of the Skorohod integral converge in \(L^2(\Omega)\) by adopting a suitable characterization of the Cameron-Martin norm, before appending the approximants with higher-level compensation terms without altering the limit. Lastly, the formula is obtained after a re-balancing of terms, and we also show how to recover the standard It\"{o} formulas in the case where the vector fields of the RDE governing \(Y\) are commutative.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073768480 |
source | Free E- Journals |
subjects | Approximants Brownian motion Differential equations Fields (mathematics) Gaussian process Integrals |
title | A Stratonovich-Skorohod integral formula for Volterra Gaussian rough paths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Stratonovich-Skorohod%20integral%20formula%20for%20Volterra%20Gaussian%20rough%20paths&rft.jtitle=arXiv.org&rft.au=Cass,%20Thomas&rft.date=2018-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073768480%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073768480&rft_id=info:pmid/&rfr_iscdi=true |