Combining filter design with model-based filtering (with an application to business-cycle estimation)

Filters used to estimate unobserved components in time series are often designed on a priori grounds, so as to capture the frequencies associated with the component. A limitation of these filters is that they may yield spurious results. The danger can be avoided if the so-called ARIMA-model-based (A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2005-10, Vol.21 (4), p.691-710
Hauptverfasser: Kaiser, Regina, Maravall, Agustín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 710
container_issue 4
container_start_page 691
container_title International journal of forecasting
container_volume 21
creator Kaiser, Regina
Maravall, Agustín
description Filters used to estimate unobserved components in time series are often designed on a priori grounds, so as to capture the frequencies associated with the component. A limitation of these filters is that they may yield spurious results. The danger can be avoided if the so-called ARIMA-model-based (AMB) procedure is used to derive the filter. However, parsimony of ARIMA models typically implies little resolution in terms of the detection of hidden components. It would be desirable to combine a higher resolution with consistency of the structure of the observed series. We show first that for a large class of a priori designed filters, an AMB interpretation is always possible. Using this result, proper convolution of AMB filters can produce richer decompositions of the series that incorporate a priori desired features of the components and fully respect the ARIMA model for the observed series (hence no additional parameter needs to be estimated). The procedure is discussed in detail in the context of business-cycle estimation by means of the Hodrick-Prescott filter applied to a seasonally adjusted series or a trend–cycle component.
doi_str_mv 10.1016/j.ijforecast.2005.04.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207375194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169207005000531</els_id><sourcerecordid>906460481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-83d80215339ee2886124ffc16e2f1c62168c448ed3efd17b5fc86557de973d713</originalsourceid><addsrcrecordid>eNqFUEtv1DAQthBILIX_YHGCQ1I_ktg5wopHUSUucLay9rh1lLWD7S3af8-kW8GRw9jWfI8Zf4RQzlrO-HA9t2H2KYOdSm0FY33LuhaBZ2THtRKNxt5zssPO2Aim2EvyqpSZIVFxviOwT8dDiCHeUR-WCpk6KOEu0t-h3tNjcrA0h6mAe4I34rtHbIp0Wtcl2KmGFGlN9HAqIUIpjT3bBSiUGo6P4PvX5IWflgJvnu4r8vPzpx_7r83t9y83-w-3je1FVxstnWaC91KOAELrgYvOe8sHEJ7bQfBB267T4CR4x9Wh91YPfa8cjEo6xeUVeXvxXXP6dcIFzJxOOeJIg3-XqudjhyR9IdmcSsngzZpx0Xw2nJktUzObf5maLVPDOoMASr9dpBlWsH91ABBiRYV5MHISHI_z9tiUcgpYHdaKNYzcKBxzX49o9vFiBpjIQ4Bsig0QLbiAo6txKfx_oz-KMJ8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207375194</pqid></control><display><type>article</type><title>Combining filter design with model-based filtering (with an application to business-cycle estimation)</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>RePEc</source><creator>Kaiser, Regina ; Maravall, Agustín</creator><creatorcontrib>Kaiser, Regina ; Maravall, Agustín</creatorcontrib><description>Filters used to estimate unobserved components in time series are often designed on a priori grounds, so as to capture the frequencies associated with the component. A limitation of these filters is that they may yield spurious results. The danger can be avoided if the so-called ARIMA-model-based (AMB) procedure is used to derive the filter. However, parsimony of ARIMA models typically implies little resolution in terms of the detection of hidden components. It would be desirable to combine a higher resolution with consistency of the structure of the observed series. We show first that for a large class of a priori designed filters, an AMB interpretation is always possible. Using this result, proper convolution of AMB filters can produce richer decompositions of the series that incorporate a priori desired features of the components and fully respect the ARIMA model for the observed series (hence no additional parameter needs to be estimated). The procedure is discussed in detail in the context of business-cycle estimation by means of the Hodrick-Prescott filter applied to a seasonally adjusted series or a trend–cycle component.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/j.ijforecast.2005.04.016</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ARIMA models ; Business cycles ; Economic models ; Filtering and smoothing ; Hodrick-Prescott filter ; Studies ; Time series ; Trend and cycle estimation</subject><ispartof>International journal of forecasting, 2005-10, Vol.21 (4), p.691-710</ispartof><rights>2005 International Institute of Forecasters</rights><rights>Copyright Elsevier Sequoia S.A. Oct-Dec 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-83d80215339ee2886124ffc16e2f1c62168c448ed3efd17b5fc86557de973d713</citedby><cites>FETCH-LOGICAL-c524t-83d80215339ee2886124ffc16e2f1c62168c448ed3efd17b5fc86557de973d713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijforecast.2005.04.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,3998,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a21_3ay_3a2005_3ai_3a4_3ap_3a691-710.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaiser, Regina</creatorcontrib><creatorcontrib>Maravall, Agustín</creatorcontrib><title>Combining filter design with model-based filtering (with an application to business-cycle estimation)</title><title>International journal of forecasting</title><description>Filters used to estimate unobserved components in time series are often designed on a priori grounds, so as to capture the frequencies associated with the component. A limitation of these filters is that they may yield spurious results. The danger can be avoided if the so-called ARIMA-model-based (AMB) procedure is used to derive the filter. However, parsimony of ARIMA models typically implies little resolution in terms of the detection of hidden components. It would be desirable to combine a higher resolution with consistency of the structure of the observed series. We show first that for a large class of a priori designed filters, an AMB interpretation is always possible. Using this result, proper convolution of AMB filters can produce richer decompositions of the series that incorporate a priori desired features of the components and fully respect the ARIMA model for the observed series (hence no additional parameter needs to be estimated). The procedure is discussed in detail in the context of business-cycle estimation by means of the Hodrick-Prescott filter applied to a seasonally adjusted series or a trend–cycle component.</description><subject>ARIMA models</subject><subject>Business cycles</subject><subject>Economic models</subject><subject>Filtering and smoothing</subject><subject>Hodrick-Prescott filter</subject><subject>Studies</subject><subject>Time series</subject><subject>Trend and cycle estimation</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUEtv1DAQthBILIX_YHGCQ1I_ktg5wopHUSUucLay9rh1lLWD7S3af8-kW8GRw9jWfI8Zf4RQzlrO-HA9t2H2KYOdSm0FY33LuhaBZ2THtRKNxt5zssPO2Aim2EvyqpSZIVFxviOwT8dDiCHeUR-WCpk6KOEu0t-h3tNjcrA0h6mAe4I34rtHbIp0Wtcl2KmGFGlN9HAqIUIpjT3bBSiUGo6P4PvX5IWflgJvnu4r8vPzpx_7r83t9y83-w-3je1FVxstnWaC91KOAELrgYvOe8sHEJ7bQfBB267T4CR4x9Wh91YPfa8cjEo6xeUVeXvxXXP6dcIFzJxOOeJIg3-XqudjhyR9IdmcSsngzZpx0Xw2nJktUzObf5maLVPDOoMASr9dpBlWsH91ABBiRYV5MHISHI_z9tiUcgpYHdaKNYzcKBxzX49o9vFiBpjIQ4Bsig0QLbiAo6txKfx_oz-KMJ8U</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Kaiser, Regina</creator><creator>Maravall, Agustín</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051001</creationdate><title>Combining filter design with model-based filtering (with an application to business-cycle estimation)</title><author>Kaiser, Regina ; Maravall, Agustín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-83d80215339ee2886124ffc16e2f1c62168c448ed3efd17b5fc86557de973d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ARIMA models</topic><topic>Business cycles</topic><topic>Economic models</topic><topic>Filtering and smoothing</topic><topic>Hodrick-Prescott filter</topic><topic>Studies</topic><topic>Time series</topic><topic>Trend and cycle estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaiser, Regina</creatorcontrib><creatorcontrib>Maravall, Agustín</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaiser, Regina</au><au>Maravall, Agustín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining filter design with model-based filtering (with an application to business-cycle estimation)</atitle><jtitle>International journal of forecasting</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>21</volume><issue>4</issue><spage>691</spage><epage>710</epage><pages>691-710</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>Filters used to estimate unobserved components in time series are often designed on a priori grounds, so as to capture the frequencies associated with the component. A limitation of these filters is that they may yield spurious results. The danger can be avoided if the so-called ARIMA-model-based (AMB) procedure is used to derive the filter. However, parsimony of ARIMA models typically implies little resolution in terms of the detection of hidden components. It would be desirable to combine a higher resolution with consistency of the structure of the observed series. We show first that for a large class of a priori designed filters, an AMB interpretation is always possible. Using this result, proper convolution of AMB filters can produce richer decompositions of the series that incorporate a priori desired features of the components and fully respect the ARIMA model for the observed series (hence no additional parameter needs to be estimated). The procedure is discussed in detail in the context of business-cycle estimation by means of the Hodrick-Prescott filter applied to a seasonally adjusted series or a trend–cycle component.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijforecast.2005.04.016</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-2070
ispartof International journal of forecasting, 2005-10, Vol.21 (4), p.691-710
issn 0169-2070
1872-8200
language eng
recordid cdi_proquest_journals_207375194
source Elsevier ScienceDirect Journals Complete - AutoHoldings; RePEc
subjects ARIMA models
Business cycles
Economic models
Filtering and smoothing
Hodrick-Prescott filter
Studies
Time series
Trend and cycle estimation
title Combining filter design with model-based filtering (with an application to business-cycle estimation)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20filter%20design%20with%20model-based%20filtering%20(with%20an%20application%20to%20business-cycle%20estimation)&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Kaiser,%20Regina&rft.date=2005-10-01&rft.volume=21&rft.issue=4&rft.spage=691&rft.epage=710&rft.pages=691-710&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/j.ijforecast.2005.04.016&rft_dat=%3Cproquest_cross%3E906460481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207375194&rft_id=info:pmid/&rft_els_id=S0169207005000531&rfr_iscdi=true