A nearest neighbor model for forecasting market response

Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 1994, Vol.10 (2), p.191-207
Hauptverfasser: Mulhern, Francis J., Caprara, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 2
container_start_page 191
container_title International journal of forecasting
container_volume 10
creator Mulhern, Francis J.
Caprara, Robert J.
description Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic process generates each data point in the time series. We introduce a multivariate methodology that uses a nearest neighbor technique to represent time series behavior that is complex and nonstationary. This methodology represents a deterministic approach to modeling a time series as a discrete dynamic system. In this paper we describe how a time series may exhibit chaotic behavior, and present a multivariate nearest neighbor method capable of representing such behavior. We provide an empirical demonstration using store scanner data for a consumer packaged good.
doi_str_mv 10.1016/0169-2070(94)90002-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207375138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0169207094900027</els_id><sourcerecordid>50399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-9a7ece6e03e9b69fe5b1deae353aa70e32c4a1de9cd14ce0f5e52a1f09dd431a3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwDThUcIFDIW7apbkgTRN_NYkLnKMsdbeMrS1JN2nfHndFu8HhyZH184v9GLsEfgccRvckFSdc8huV3irOeRLLIzaAXCZxnnB-zAYH5JSdhbAkJpMAA5aPowqNx9BSdfPFrPbRui5wFZX0IqE1oXXVPFob_4VtRGhTVwHP2UlpVgEvfuuQfT49fkxe4un78-tkPI1tBrKNlZFocYRcoJqNVInZDAo0KDJhjOQoEpsa6ihbQGqRlxlmiYGSq6JIBRgxZFe9b-Pr7w3tqZf1xlf0paZzhMxA5ARd_wWBoEsVUYqotKesr0PwWOrGOzprp4HrLkjdpdTZcq1SvQ9SSxp768c8NmgPM4joqpYS0lstDDkIs-seikaFcaSE1Oxb0JnqRbsms4feDCmzrUOvg3VYWSwcRd3qonb_b_MDYkqSZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1305795139</pqid></control><display><type>article</type><title>A nearest neighbor model for forecasting market response</title><source>RePEc</source><source>Periodicals Index Online</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mulhern, Francis J. ; Caprara, Robert J.</creator><creatorcontrib>Mulhern, Francis J. ; Caprara, Robert J.</creatorcontrib><description>Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic process generates each data point in the time series. We introduce a multivariate methodology that uses a nearest neighbor technique to represent time series behavior that is complex and nonstationary. This methodology represents a deterministic approach to modeling a time series as a discrete dynamic system. In this paper we describe how a time series may exhibit chaotic behavior, and present a multivariate nearest neighbor method capable of representing such behavior. We provide an empirical demonstration using store scanner data for a consumer packaged good.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/0169-2070(94)90002-7</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chaos ; Chaos theory ; Forecasting ; Forecasting techniques ; Marketing ; Mathematical models ; Nearest neighbors ; Statistical analysis ; Studies ; Time series</subject><ispartof>International journal of forecasting, 1994, Vol.10 (2), p.191-207</ispartof><rights>1994</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-9a7ece6e03e9b69fe5b1deae353aa70e32c4a1de9cd14ce0f5e52a1f09dd431a3</citedby><cites>FETCH-LOGICAL-c517t-9a7ece6e03e9b69fe5b1deae353aa70e32c4a1de9cd14ce0f5e52a1f09dd431a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0169-2070(94)90002-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4007,4023,27868,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a10_3ay_3a1994_3ai_3a2_3ap_3a191-207.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Mulhern, Francis J.</creatorcontrib><creatorcontrib>Caprara, Robert J.</creatorcontrib><title>A nearest neighbor model for forecasting market response</title><title>International journal of forecasting</title><description>Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic process generates each data point in the time series. We introduce a multivariate methodology that uses a nearest neighbor technique to represent time series behavior that is complex and nonstationary. This methodology represents a deterministic approach to modeling a time series as a discrete dynamic system. In this paper we describe how a time series may exhibit chaotic behavior, and present a multivariate nearest neighbor method capable of representing such behavior. We provide an empirical demonstration using store scanner data for a consumer packaged good.</description><subject>Chaos</subject><subject>Chaos theory</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Marketing</subject><subject>Mathematical models</subject><subject>Nearest neighbors</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Time series</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>K30</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwDThUcIFDIW7apbkgTRN_NYkLnKMsdbeMrS1JN2nfHndFu8HhyZH184v9GLsEfgccRvckFSdc8huV3irOeRLLIzaAXCZxnnB-zAYH5JSdhbAkJpMAA5aPowqNx9BSdfPFrPbRui5wFZX0IqE1oXXVPFob_4VtRGhTVwHP2UlpVgEvfuuQfT49fkxe4un78-tkPI1tBrKNlZFocYRcoJqNVInZDAo0KDJhjOQoEpsa6ihbQGqRlxlmiYGSq6JIBRgxZFe9b-Pr7w3tqZf1xlf0paZzhMxA5ARd_wWBoEsVUYqotKesr0PwWOrGOzprp4HrLkjdpdTZcq1SvQ9SSxp768c8NmgPM4joqpYS0lstDDkIs-seikaFcaSE1Oxb0JnqRbsms4feDCmzrUOvg3VYWSwcRd3qonb_b_MDYkqSZA</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Mulhern, Francis J.</creator><creator>Caprara, Robert J.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HNJIA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>1994</creationdate><title>A nearest neighbor model for forecasting market response</title><author>Mulhern, Francis J. ; Caprara, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-9a7ece6e03e9b69fe5b1deae353aa70e32c4a1de9cd14ce0f5e52a1f09dd431a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Chaos</topic><topic>Chaos theory</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Marketing</topic><topic>Mathematical models</topic><topic>Nearest neighbors</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulhern, Francis J.</creatorcontrib><creatorcontrib>Caprara, Robert J.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 20</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulhern, Francis J.</au><au>Caprara, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nearest neighbor model for forecasting market response</atitle><jtitle>International journal of forecasting</jtitle><date>1994</date><risdate>1994</risdate><volume>10</volume><issue>2</issue><spage>191</spage><epage>207</epage><pages>191-207</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic process generates each data point in the time series. We introduce a multivariate methodology that uses a nearest neighbor technique to represent time series behavior that is complex and nonstationary. This methodology represents a deterministic approach to modeling a time series as a discrete dynamic system. In this paper we describe how a time series may exhibit chaotic behavior, and present a multivariate nearest neighbor method capable of representing such behavior. We provide an empirical demonstration using store scanner data for a consumer packaged good.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0169-2070(94)90002-7</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2070
ispartof International journal of forecasting, 1994, Vol.10 (2), p.191-207
issn 0169-2070
1872-8200
language eng
recordid cdi_proquest_journals_207375138
source RePEc; Periodicals Index Online; ScienceDirect Journals (5 years ago - present)
subjects Chaos
Chaos theory
Forecasting
Forecasting techniques
Marketing
Mathematical models
Nearest neighbors
Statistical analysis
Studies
Time series
title A nearest neighbor model for forecasting market response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nearest%20neighbor%20model%20for%20forecasting%20market%20response&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Mulhern,%20Francis%20J.&rft.date=1994&rft.volume=10&rft.issue=2&rft.spage=191&rft.epage=207&rft.pages=191-207&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/0169-2070(94)90002-7&rft_dat=%3Cproquest_cross%3E50399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1305795139&rft_id=info:pmid/&rft_els_id=0169207094900027&rfr_iscdi=true