A nearest neighbor model for forecasting market response
Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic...
Gespeichert in:
Veröffentlicht in: | International journal of forecasting 1994, Vol.10 (2), p.191-207 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 2 |
container_start_page | 191 |
container_title | International journal of forecasting |
container_volume | 10 |
creator | Mulhern, Francis J. Caprara, Robert J. |
description | Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic process generates each data point in the time series. We introduce a multivariate methodology that uses a nearest neighbor technique to represent time series behavior that is complex and nonstationary. This methodology represents a deterministic approach to modeling a time series as a discrete dynamic system. In this paper we describe how a time series may exhibit chaotic behavior, and present a multivariate nearest neighbor method capable of representing such behavior. We provide an empirical demonstration using store scanner data for a consumer packaged good. |
doi_str_mv | 10.1016/0169-2070(94)90002-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207375138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0169207094900027</els_id><sourcerecordid>50399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-9a7ece6e03e9b69fe5b1deae353aa70e32c4a1de9cd14ce0f5e52a1f09dd431a3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwDThUcIFDIW7apbkgTRN_NYkLnKMsdbeMrS1JN2nfHndFu8HhyZH184v9GLsEfgccRvckFSdc8huV3irOeRLLIzaAXCZxnnB-zAYH5JSdhbAkJpMAA5aPowqNx9BSdfPFrPbRui5wFZX0IqE1oXXVPFob_4VtRGhTVwHP2UlpVgEvfuuQfT49fkxe4un78-tkPI1tBrKNlZFocYRcoJqNVInZDAo0KDJhjOQoEpsa6ihbQGqRlxlmiYGSq6JIBRgxZFe9b-Pr7w3tqZf1xlf0paZzhMxA5ARd_wWBoEsVUYqotKesr0PwWOrGOzprp4HrLkjdpdTZcq1SvQ9SSxp768c8NmgPM4joqpYS0lstDDkIs-seikaFcaSE1Oxb0JnqRbsms4feDCmzrUOvg3VYWSwcRd3qonb_b_MDYkqSZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1305795139</pqid></control><display><type>article</type><title>A nearest neighbor model for forecasting market response</title><source>RePEc</source><source>Periodicals Index Online</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mulhern, Francis J. ; Caprara, Robert J.</creator><creatorcontrib>Mulhern, Francis J. ; Caprara, Robert J.</creatorcontrib><description>Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic process generates each data point in the time series. We introduce a multivariate methodology that uses a nearest neighbor technique to represent time series behavior that is complex and nonstationary. This methodology represents a deterministic approach to modeling a time series as a discrete dynamic system. In this paper we describe how a time series may exhibit chaotic behavior, and present a multivariate nearest neighbor method capable of representing such behavior. We provide an empirical demonstration using store scanner data for a consumer packaged good.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/0169-2070(94)90002-7</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chaos ; Chaos theory ; Forecasting ; Forecasting techniques ; Marketing ; Mathematical models ; Nearest neighbors ; Statistical analysis ; Studies ; Time series</subject><ispartof>International journal of forecasting, 1994, Vol.10 (2), p.191-207</ispartof><rights>1994</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-9a7ece6e03e9b69fe5b1deae353aa70e32c4a1de9cd14ce0f5e52a1f09dd431a3</citedby><cites>FETCH-LOGICAL-c517t-9a7ece6e03e9b69fe5b1deae353aa70e32c4a1de9cd14ce0f5e52a1f09dd431a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0169-2070(94)90002-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4007,4023,27868,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a10_3ay_3a1994_3ai_3a2_3ap_3a191-207.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Mulhern, Francis J.</creatorcontrib><creatorcontrib>Caprara, Robert J.</creatorcontrib><title>A nearest neighbor model for forecasting market response</title><title>International journal of forecasting</title><description>Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic process generates each data point in the time series. We introduce a multivariate methodology that uses a nearest neighbor technique to represent time series behavior that is complex and nonstationary. This methodology represents a deterministic approach to modeling a time series as a discrete dynamic system. In this paper we describe how a time series may exhibit chaotic behavior, and present a multivariate nearest neighbor method capable of representing such behavior. We provide an empirical demonstration using store scanner data for a consumer packaged good.</description><subject>Chaos</subject><subject>Chaos theory</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Marketing</subject><subject>Mathematical models</subject><subject>Nearest neighbors</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Time series</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>K30</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwDThUcIFDIW7apbkgTRN_NYkLnKMsdbeMrS1JN2nfHndFu8HhyZH184v9GLsEfgccRvckFSdc8huV3irOeRLLIzaAXCZxnnB-zAYH5JSdhbAkJpMAA5aPowqNx9BSdfPFrPbRui5wFZX0IqE1oXXVPFob_4VtRGhTVwHP2UlpVgEvfuuQfT49fkxe4un78-tkPI1tBrKNlZFocYRcoJqNVInZDAo0KDJhjOQoEpsa6ihbQGqRlxlmiYGSq6JIBRgxZFe9b-Pr7w3tqZf1xlf0paZzhMxA5ARd_wWBoEsVUYqotKesr0PwWOrGOzprp4HrLkjdpdTZcq1SvQ9SSxp768c8NmgPM4joqpYS0lstDDkIs-seikaFcaSE1Oxb0JnqRbsms4feDCmzrUOvg3VYWSwcRd3qonb_b_MDYkqSZA</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Mulhern, Francis J.</creator><creator>Caprara, Robert J.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HNJIA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>1994</creationdate><title>A nearest neighbor model for forecasting market response</title><author>Mulhern, Francis J. ; Caprara, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-9a7ece6e03e9b69fe5b1deae353aa70e32c4a1de9cd14ce0f5e52a1f09dd431a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Chaos</topic><topic>Chaos theory</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Marketing</topic><topic>Mathematical models</topic><topic>Nearest neighbors</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulhern, Francis J.</creatorcontrib><creatorcontrib>Caprara, Robert J.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 20</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulhern, Francis J.</au><au>Caprara, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nearest neighbor model for forecasting market response</atitle><jtitle>International journal of forecasting</jtitle><date>1994</date><risdate>1994</risdate><volume>10</volume><issue>2</issue><spage>191</spage><epage>207</epage><pages>191-207</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>Researchers in marketing often are interested in modeling time series and causal relationships simultaneously. The prevailing approach to doing so is a transfer function model that combines a Box-Jenkins model with regression analysis. The Box-Jenkins component assumes that a stationary, stochastic process generates each data point in the time series. We introduce a multivariate methodology that uses a nearest neighbor technique to represent time series behavior that is complex and nonstationary. This methodology represents a deterministic approach to modeling a time series as a discrete dynamic system. In this paper we describe how a time series may exhibit chaotic behavior, and present a multivariate nearest neighbor method capable of representing such behavior. We provide an empirical demonstration using store scanner data for a consumer packaged good.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0169-2070(94)90002-7</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2070 |
ispartof | International journal of forecasting, 1994, Vol.10 (2), p.191-207 |
issn | 0169-2070 1872-8200 |
language | eng |
recordid | cdi_proquest_journals_207375138 |
source | RePEc; Periodicals Index Online; ScienceDirect Journals (5 years ago - present) |
subjects | Chaos Chaos theory Forecasting Forecasting techniques Marketing Mathematical models Nearest neighbors Statistical analysis Studies Time series |
title | A nearest neighbor model for forecasting market response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nearest%20neighbor%20model%20for%20forecasting%20market%20response&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Mulhern,%20Francis%20J.&rft.date=1994&rft.volume=10&rft.issue=2&rft.spage=191&rft.epage=207&rft.pages=191-207&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/0169-2070(94)90002-7&rft_dat=%3Cproquest_cross%3E50399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1305795139&rft_id=info:pmid/&rft_els_id=0169207094900027&rfr_iscdi=true |