The pattern of accretion flow on to Sgr A

The material accreting on to Sgr A* most probably comes from the nearby stars. We analyse the pattern of this flow at distances of a fraction of a parsec, and we argue that the net angular momentum of this material is low but non-negligible, and the initially supersonic disc accretion changes into s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2006-07, Vol.370 (1), p.219-228
Hauptverfasser: Mościbrodzka, Monika, Das, Tapas K., Czerny, Bozena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 1
container_start_page 219
container_title Monthly notices of the Royal Astronomical Society
container_volume 370
creator Mościbrodzka, Monika
Das, Tapas K.
Czerny, Bozena
description The material accreting on to Sgr A* most probably comes from the nearby stars. We analyse the pattern of this flow at distances of a fraction of a parsec, and we argue that the net angular momentum of this material is low but non-negligible, and the initially supersonic disc accretion changes into subsonic flow with constant angular momentum. Next, we estimate the flow parameters at a distance R BHL from the black hole, and we argue that for the plausible parameter range the accretion flow is non-stationary. The inflow becomes supersonic at a distance of ∼104 Rg , but the solution does not continue below the horizon and the material piles up forming a torus, or a ring, at a distance of a few, up to tens of Schwarzchild, radii. Such a torus is known to be unstable and may explain strong variability of the flow in Sgr A*. Our considerations show that the temporary formation of such a torus seems to be unavoidable. Our best-fitting model predicts a rather large accretion rate of around 4 × 10−6- M⊙-yr−1 directly on Sgr A*. We argue that magnetic fields in the flow are tangled, and this allows our model to overcome the disagreement with the Faraday rotation limits.
doi_str_mv 10.1111/j.1365-2966.2006.10470.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207372462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2006.10470.x</oup_id><sourcerecordid>1079598921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5030-362e0b5cda61655f2e6a2052e91121cd7c732555905962e3debdfe01b04cce8e3</originalsourceid><addsrcrecordid>eNqNkFFLwzAUhYMoOKf_oQg--NB6kzTp-iKM4aYyJ7hJH0OWptpZ25l0bPv3puuYLwrm5QZyvnNzDkIehgC7c7MIMOXMJzHnAQHgAYYwgmBzhDqHh2PUAaDM70UYn6IzaxcAEFLCO-h69q69paxrbUqvyjyplNF1XpVeVlRrz8268qZvxuufo5NMFlZf7GcXvQ7vZoN7f_w8ehj0x75iQMGnnGiYM5VKjjljGdFcEmBExxgTrNJIRZQwxmJgsZPSVM_TTAOeQ6iU7mnaRZet79JUXytta7GoVqZ0KwWBiEYk5MSJeq1ImcpaozOxNPmnNFuBQTS9iIVo4osmvmh6EbtexMahV3t_aZUsMiNLldsfPopDTilzuttWt84Lvf23v3iavOyuzoC2BtVq-Qfu__Y9v6VyW-vNgZPmQ3CXnolkMhLDxwh60yQRCf0GlCqRQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207372462</pqid></control><display><type>article</type><title>The pattern of accretion flow on to Sgr A</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library All Journals</source><creator>Mościbrodzka, Monika ; Das, Tapas K. ; Czerny, Bozena</creator><creatorcontrib>Mościbrodzka, Monika ; Das, Tapas K. ; Czerny, Bozena</creatorcontrib><description>The material accreting on to Sgr A* most probably comes from the nearby stars. We analyse the pattern of this flow at distances of a fraction of a parsec, and we argue that the net angular momentum of this material is low but non-negligible, and the initially supersonic disc accretion changes into subsonic flow with constant angular momentum. Next, we estimate the flow parameters at a distance R BHL from the black hole, and we argue that for the plausible parameter range the accretion flow is non-stationary. The inflow becomes supersonic at a distance of ∼104 Rg , but the solution does not continue below the horizon and the material piles up forming a torus, or a ring, at a distance of a few, up to tens of Schwarzchild, radii. Such a torus is known to be unstable and may explain strong variability of the flow in Sgr A*. Our considerations show that the temporary formation of such a torus seems to be unavoidable. Our best-fitting model predicts a rather large accretion rate of around 4 × 10−6- M⊙-yr−1 directly on Sgr A*. We argue that magnetic fields in the flow are tangled, and this allows our model to overcome the disagreement with the Faraday rotation limits.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2006.10470.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Accretion disks ; accretion: accretion discs ; Astronomy ; Black holes ; Earth, ocean, space ; Exact sciences and technology ; galaxies: active ; Galaxy: centre ; Magnetic fields</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2006-07, Vol.370 (1), p.219-228</ispartof><rights>2006 The Authors. Journal compilation © 2006 RAS 2006</rights><rights>2006 INIST-CNRS</rights><rights>2006 The Authors. Journal compilation © 2006 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5030-362e0b5cda61655f2e6a2052e91121cd7c732555905962e3debdfe01b04cce8e3</citedby><cites>FETCH-LOGICAL-c5030-362e0b5cda61655f2e6a2052e91121cd7c732555905962e3debdfe01b04cce8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2006.10470.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2006.10470.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17946335$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mościbrodzka, Monika</creatorcontrib><creatorcontrib>Das, Tapas K.</creatorcontrib><creatorcontrib>Czerny, Bozena</creatorcontrib><title>The pattern of accretion flow on to Sgr A</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>The material accreting on to Sgr A* most probably comes from the nearby stars. We analyse the pattern of this flow at distances of a fraction of a parsec, and we argue that the net angular momentum of this material is low but non-negligible, and the initially supersonic disc accretion changes into subsonic flow with constant angular momentum. Next, we estimate the flow parameters at a distance R BHL from the black hole, and we argue that for the plausible parameter range the accretion flow is non-stationary. The inflow becomes supersonic at a distance of ∼104 Rg , but the solution does not continue below the horizon and the material piles up forming a torus, or a ring, at a distance of a few, up to tens of Schwarzchild, radii. Such a torus is known to be unstable and may explain strong variability of the flow in Sgr A*. Our considerations show that the temporary formation of such a torus seems to be unavoidable. Our best-fitting model predicts a rather large accretion rate of around 4 × 10−6- M⊙-yr−1 directly on Sgr A*. We argue that magnetic fields in the flow are tangled, and this allows our model to overcome the disagreement with the Faraday rotation limits.</description><subject>Accretion disks</subject><subject>accretion: accretion discs</subject><subject>Astronomy</subject><subject>Black holes</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>galaxies: active</subject><subject>Galaxy: centre</subject><subject>Magnetic fields</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkFFLwzAUhYMoOKf_oQg--NB6kzTp-iKM4aYyJ7hJH0OWptpZ25l0bPv3puuYLwrm5QZyvnNzDkIehgC7c7MIMOXMJzHnAQHgAYYwgmBzhDqHh2PUAaDM70UYn6IzaxcAEFLCO-h69q69paxrbUqvyjyplNF1XpVeVlRrz8268qZvxuufo5NMFlZf7GcXvQ7vZoN7f_w8ehj0x75iQMGnnGiYM5VKjjljGdFcEmBExxgTrNJIRZQwxmJgsZPSVM_TTAOeQ6iU7mnaRZet79JUXytta7GoVqZ0KwWBiEYk5MSJeq1ImcpaozOxNPmnNFuBQTS9iIVo4osmvmh6EbtexMahV3t_aZUsMiNLldsfPopDTilzuttWt84Lvf23v3iavOyuzoC2BtVq-Qfu__Y9v6VyW-vNgZPmQ3CXnolkMhLDxwh60yQRCf0GlCqRQg</recordid><startdate>20060721</startdate><enddate>20060721</enddate><creator>Mościbrodzka, Monika</creator><creator>Das, Tapas K.</creator><creator>Czerny, Bozena</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20060721</creationdate><title>The pattern of accretion flow on to Sgr A</title><author>Mościbrodzka, Monika ; Das, Tapas K. ; Czerny, Bozena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5030-362e0b5cda61655f2e6a2052e91121cd7c732555905962e3debdfe01b04cce8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accretion disks</topic><topic>accretion: accretion discs</topic><topic>Astronomy</topic><topic>Black holes</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>galaxies: active</topic><topic>Galaxy: centre</topic><topic>Magnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mościbrodzka, Monika</creatorcontrib><creatorcontrib>Das, Tapas K.</creatorcontrib><creatorcontrib>Czerny, Bozena</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mościbrodzka, Monika</au><au>Das, Tapas K.</au><au>Czerny, Bozena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pattern of accretion flow on to Sgr A</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><date>2006-07-21</date><risdate>2006</risdate><volume>370</volume><issue>1</issue><spage>219</spage><epage>228</epage><pages>219-228</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>The material accreting on to Sgr A* most probably comes from the nearby stars. We analyse the pattern of this flow at distances of a fraction of a parsec, and we argue that the net angular momentum of this material is low but non-negligible, and the initially supersonic disc accretion changes into subsonic flow with constant angular momentum. Next, we estimate the flow parameters at a distance R BHL from the black hole, and we argue that for the plausible parameter range the accretion flow is non-stationary. The inflow becomes supersonic at a distance of ∼104 Rg , but the solution does not continue below the horizon and the material piles up forming a torus, or a ring, at a distance of a few, up to tens of Schwarzchild, radii. Such a torus is known to be unstable and may explain strong variability of the flow in Sgr A*. Our considerations show that the temporary formation of such a torus seems to be unavoidable. Our best-fitting model predicts a rather large accretion rate of around 4 × 10−6- M⊙-yr−1 directly on Sgr A*. We argue that magnetic fields in the flow are tangled, and this allows our model to overcome the disagreement with the Faraday rotation limits.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2006.10470.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2006-07, Vol.370 (1), p.219-228
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_207372462
source Oxford Journals Open Access Collection; Wiley Online Library All Journals
subjects Accretion disks
accretion: accretion discs
Astronomy
Black holes
Earth, ocean, space
Exact sciences and technology
galaxies: active
Galaxy: centre
Magnetic fields
title The pattern of accretion flow on to Sgr A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pattern%20of%20accretion%20flow%20on%20to%20Sgr%20A&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Mo%C5%9Bcibrodzka,%20Monika&rft.date=2006-07-21&rft.volume=370&rft.issue=1&rft.spage=219&rft.epage=228&rft.pages=219-228&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2006.10470.x&rft_dat=%3Cproquest_cross%3E1079598921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207372462&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2006.10470.x&rfr_iscdi=true