Optimal combinations of realised volatility estimators

Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2009-04, Vol.25 (2), p.218-238
Hauptverfasser: Patton, Andrew J., Sheppard, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 2
container_start_page 218
container_title International journal of forecasting
container_volume 25
creator Patton, Andrew J.
Sheppard, Kevin
description Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many different functional forms. Motivated by the empirical success of combination forecasts, this paper presents a novel approach for combining individual realised measures to form new estimators of price variability. In an application to high frequency IBM price data over the period 1996–2008, we consider 32 different realised measures from 8 distinct classes of estimators. We find that a simple equally-weighted average of these estimators cannot generally be out-performed, in terms of accuracy, by any individual estimator. Moreover, we find that none of the individual estimators encompasses the information in all other estimators, providing further support for the use of combination realised measures.
doi_str_mv 10.1016/j.ijforecast.2009.01.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207372447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169207009000107</els_id><sourcerecordid>1667495701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7db34fd423afea59477c59900a5a9dd74264989a44aaca39c470e40368a4eed23</originalsourceid><addsrcrecordid>eNqFUE1PwzAMjRBIjMF_qLh35KtLc4SJT03aBc5RlroiVdeUJJu0f4-rITgi2bFlvffsPEIKRheMsuVdt_BdGyI4m_KCU6oXlGGwMzJjteJljbNzMkOoLjlV9JJcpdRRSivF2IwsN2P2O9sXLuy2frDZhyEVoS0i2N4naIpD6HHa-3wsIE3YHGK6Jhet7RPc_NQ5-Xh6fF-9lOvN8-vqfl06qWQuVbMVsm0kF7YFW2mplKu0ptRWVjeNknwpda2tlNY6KzSyKEgqlrWVAA0Xc3J70h1j-NrjftOFfRxwpcHPCMWlVAiqTyAXQ0oRWjNGvDMeDaNmMsl05s8kM5lkKMNgSH07USOM4H55AOCHjAxzMMLyCp_j1ExMYf3UYo5TZbXhojafeYdiDycxQEcOHqJJzsPgoPG4Opsm-P8v-gYamI6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207372447</pqid></control><display><type>article</type><title>Optimal combinations of realised volatility estimators</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Patton, Andrew J. ; Sheppard, Kevin</creator><creatorcontrib>Patton, Andrew J. ; Sheppard, Kevin</creatorcontrib><description>Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many different functional forms. Motivated by the empirical success of combination forecasts, this paper presents a novel approach for combining individual realised measures to form new estimators of price variability. In an application to high frequency IBM price data over the period 1996–2008, we consider 32 different realised measures from 8 distinct classes of estimators. We find that a simple equally-weighted average of these estimators cannot generally be out-performed, in terms of accuracy, by any individual estimator. Moreover, we find that none of the individual estimators encompasses the information in all other estimators, providing further support for the use of combination realised measures.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/j.ijforecast.2009.01.011</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Econometrics ; Estimating techniques ; Forecast combination ; Forecast comparison ; Realised variance ; Realised variance Volatility forecasting Forecast comparison Forecast combination ; Securities prices ; Studies ; Volatility ; Volatility forecasting</subject><ispartof>International journal of forecasting, 2009-04, Vol.25 (2), p.218-238</ispartof><rights>2009 International Institute of Forecasters</rights><rights>Copyright Elsevier Sequoia S.A. Apr-Jun 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7db34fd423afea59477c59900a5a9dd74264989a44aaca39c470e40368a4eed23</citedby><cites>FETCH-LOGICAL-c474t-7db34fd423afea59477c59900a5a9dd74264989a44aaca39c470e40368a4eed23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169207009000107$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a25_3ay_3a2009_3ai_3a2_3ap_3a218-238.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Patton, Andrew J.</creatorcontrib><creatorcontrib>Sheppard, Kevin</creatorcontrib><title>Optimal combinations of realised volatility estimators</title><title>International journal of forecasting</title><description>Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many different functional forms. Motivated by the empirical success of combination forecasts, this paper presents a novel approach for combining individual realised measures to form new estimators of price variability. In an application to high frequency IBM price data over the period 1996–2008, we consider 32 different realised measures from 8 distinct classes of estimators. We find that a simple equally-weighted average of these estimators cannot generally be out-performed, in terms of accuracy, by any individual estimator. Moreover, we find that none of the individual estimators encompasses the information in all other estimators, providing further support for the use of combination realised measures.</description><subject>Accuracy</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Forecast combination</subject><subject>Forecast comparison</subject><subject>Realised variance</subject><subject>Realised variance Volatility forecasting Forecast comparison Forecast combination</subject><subject>Securities prices</subject><subject>Studies</subject><subject>Volatility</subject><subject>Volatility forecasting</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUE1PwzAMjRBIjMF_qLh35KtLc4SJT03aBc5RlroiVdeUJJu0f4-rITgi2bFlvffsPEIKRheMsuVdt_BdGyI4m_KCU6oXlGGwMzJjteJljbNzMkOoLjlV9JJcpdRRSivF2IwsN2P2O9sXLuy2frDZhyEVoS0i2N4naIpD6HHa-3wsIE3YHGK6Jhet7RPc_NQ5-Xh6fF-9lOvN8-vqfl06qWQuVbMVsm0kF7YFW2mplKu0ptRWVjeNknwpda2tlNY6KzSyKEgqlrWVAA0Xc3J70h1j-NrjftOFfRxwpcHPCMWlVAiqTyAXQ0oRWjNGvDMeDaNmMsl05s8kM5lkKMNgSH07USOM4H55AOCHjAxzMMLyCp_j1ExMYf3UYo5TZbXhojafeYdiDycxQEcOHqJJzsPgoPG4Opsm-P8v-gYamI6o</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Patton, Andrew J.</creator><creator>Sheppard, Kevin</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090401</creationdate><title>Optimal combinations of realised volatility estimators</title><author>Patton, Andrew J. ; Sheppard, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7db34fd423afea59477c59900a5a9dd74264989a44aaca39c470e40368a4eed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Forecast combination</topic><topic>Forecast comparison</topic><topic>Realised variance</topic><topic>Realised variance Volatility forecasting Forecast comparison Forecast combination</topic><topic>Securities prices</topic><topic>Studies</topic><topic>Volatility</topic><topic>Volatility forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patton, Andrew J.</creatorcontrib><creatorcontrib>Sheppard, Kevin</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patton, Andrew J.</au><au>Sheppard, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal combinations of realised volatility estimators</atitle><jtitle>International journal of forecasting</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>25</volume><issue>2</issue><spage>218</spage><epage>238</epage><pages>218-238</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many different functional forms. Motivated by the empirical success of combination forecasts, this paper presents a novel approach for combining individual realised measures to form new estimators of price variability. In an application to high frequency IBM price data over the period 1996–2008, we consider 32 different realised measures from 8 distinct classes of estimators. We find that a simple equally-weighted average of these estimators cannot generally be out-performed, in terms of accuracy, by any individual estimator. Moreover, we find that none of the individual estimators encompasses the information in all other estimators, providing further support for the use of combination realised measures.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijforecast.2009.01.011</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2070
ispartof International journal of forecasting, 2009-04, Vol.25 (2), p.218-238
issn 0169-2070
1872-8200
language eng
recordid cdi_proquest_journals_207372447
source RePEc; Elsevier ScienceDirect Journals
subjects Accuracy
Econometrics
Estimating techniques
Forecast combination
Forecast comparison
Realised variance
Realised variance Volatility forecasting Forecast comparison Forecast combination
Securities prices
Studies
Volatility
Volatility forecasting
title Optimal combinations of realised volatility estimators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20combinations%20of%20realised%20volatility%20estimators&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Patton,%20Andrew%20J.&rft.date=2009-04-01&rft.volume=25&rft.issue=2&rft.spage=218&rft.epage=238&rft.pages=218-238&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/j.ijforecast.2009.01.011&rft_dat=%3Cproquest_cross%3E1667495701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207372447&rft_id=info:pmid/&rft_els_id=S0169207009000107&rfr_iscdi=true