Optimal combinations of realised volatility estimators
Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many d...
Gespeichert in:
Veröffentlicht in: | International journal of forecasting 2009-04, Vol.25 (2), p.218-238 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 238 |
---|---|
container_issue | 2 |
container_start_page | 218 |
container_title | International journal of forecasting |
container_volume | 25 |
creator | Patton, Andrew J. Sheppard, Kevin |
description | Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many different functional forms. Motivated by the empirical success of combination forecasts, this paper presents a novel approach for combining individual realised measures to form new estimators of price variability. In an application to high frequency IBM price data over the period 1996–2008, we consider 32 different realised measures from 8 distinct classes of estimators. We find that a simple equally-weighted average of these estimators cannot generally be out-performed, in terms of accuracy, by any individual estimator. Moreover, we find that none of the individual estimators encompasses the information in all other estimators, providing further support for the use of combination realised measures. |
doi_str_mv | 10.1016/j.ijforecast.2009.01.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207372447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169207009000107</els_id><sourcerecordid>1667495701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7db34fd423afea59477c59900a5a9dd74264989a44aaca39c470e40368a4eed23</originalsourceid><addsrcrecordid>eNqFUE1PwzAMjRBIjMF_qLh35KtLc4SJT03aBc5RlroiVdeUJJu0f4-rITgi2bFlvffsPEIKRheMsuVdt_BdGyI4m_KCU6oXlGGwMzJjteJljbNzMkOoLjlV9JJcpdRRSivF2IwsN2P2O9sXLuy2frDZhyEVoS0i2N4naIpD6HHa-3wsIE3YHGK6Jhet7RPc_NQ5-Xh6fF-9lOvN8-vqfl06qWQuVbMVsm0kF7YFW2mplKu0ptRWVjeNknwpda2tlNY6KzSyKEgqlrWVAA0Xc3J70h1j-NrjftOFfRxwpcHPCMWlVAiqTyAXQ0oRWjNGvDMeDaNmMsl05s8kM5lkKMNgSH07USOM4H55AOCHjAxzMMLyCp_j1ExMYf3UYo5TZbXhojafeYdiDycxQEcOHqJJzsPgoPG4Opsm-P8v-gYamI6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207372447</pqid></control><display><type>article</type><title>Optimal combinations of realised volatility estimators</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Patton, Andrew J. ; Sheppard, Kevin</creator><creatorcontrib>Patton, Andrew J. ; Sheppard, Kevin</creatorcontrib><description>Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many different functional forms. Motivated by the empirical success of combination forecasts, this paper presents a novel approach for combining individual realised measures to form new estimators of price variability. In an application to high frequency IBM price data over the period 1996–2008, we consider 32 different realised measures from 8 distinct classes of estimators. We find that a simple equally-weighted average of these estimators cannot generally be out-performed, in terms of accuracy, by any individual estimator. Moreover, we find that none of the individual estimators encompasses the information in all other estimators, providing further support for the use of combination realised measures.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/j.ijforecast.2009.01.011</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Econometrics ; Estimating techniques ; Forecast combination ; Forecast comparison ; Realised variance ; Realised variance Volatility forecasting Forecast comparison Forecast combination ; Securities prices ; Studies ; Volatility ; Volatility forecasting</subject><ispartof>International journal of forecasting, 2009-04, Vol.25 (2), p.218-238</ispartof><rights>2009 International Institute of Forecasters</rights><rights>Copyright Elsevier Sequoia S.A. Apr-Jun 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7db34fd423afea59477c59900a5a9dd74264989a44aaca39c470e40368a4eed23</citedby><cites>FETCH-LOGICAL-c474t-7db34fd423afea59477c59900a5a9dd74264989a44aaca39c470e40368a4eed23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169207009000107$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a25_3ay_3a2009_3ai_3a2_3ap_3a218-238.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Patton, Andrew J.</creatorcontrib><creatorcontrib>Sheppard, Kevin</creatorcontrib><title>Optimal combinations of realised volatility estimators</title><title>International journal of forecasting</title><description>Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many different functional forms. Motivated by the empirical success of combination forecasts, this paper presents a novel approach for combining individual realised measures to form new estimators of price variability. In an application to high frequency IBM price data over the period 1996–2008, we consider 32 different realised measures from 8 distinct classes of estimators. We find that a simple equally-weighted average of these estimators cannot generally be out-performed, in terms of accuracy, by any individual estimator. Moreover, we find that none of the individual estimators encompasses the information in all other estimators, providing further support for the use of combination realised measures.</description><subject>Accuracy</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Forecast combination</subject><subject>Forecast comparison</subject><subject>Realised variance</subject><subject>Realised variance Volatility forecasting Forecast comparison Forecast combination</subject><subject>Securities prices</subject><subject>Studies</subject><subject>Volatility</subject><subject>Volatility forecasting</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUE1PwzAMjRBIjMF_qLh35KtLc4SJT03aBc5RlroiVdeUJJu0f4-rITgi2bFlvffsPEIKRheMsuVdt_BdGyI4m_KCU6oXlGGwMzJjteJljbNzMkOoLjlV9JJcpdRRSivF2IwsN2P2O9sXLuy2frDZhyEVoS0i2N4naIpD6HHa-3wsIE3YHGK6Jhet7RPc_NQ5-Xh6fF-9lOvN8-vqfl06qWQuVbMVsm0kF7YFW2mplKu0ptRWVjeNknwpda2tlNY6KzSyKEgqlrWVAA0Xc3J70h1j-NrjftOFfRxwpcHPCMWlVAiqTyAXQ0oRWjNGvDMeDaNmMsl05s8kM5lkKMNgSH07USOM4H55AOCHjAxzMMLyCp_j1ExMYf3UYo5TZbXhojafeYdiDycxQEcOHqJJzsPgoPG4Opsm-P8v-gYamI6o</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Patton, Andrew J.</creator><creator>Sheppard, Kevin</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090401</creationdate><title>Optimal combinations of realised volatility estimators</title><author>Patton, Andrew J. ; Sheppard, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7db34fd423afea59477c59900a5a9dd74264989a44aaca39c470e40368a4eed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Forecast combination</topic><topic>Forecast comparison</topic><topic>Realised variance</topic><topic>Realised variance Volatility forecasting Forecast comparison Forecast combination</topic><topic>Securities prices</topic><topic>Studies</topic><topic>Volatility</topic><topic>Volatility forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patton, Andrew J.</creatorcontrib><creatorcontrib>Sheppard, Kevin</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patton, Andrew J.</au><au>Sheppard, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal combinations of realised volatility estimators</atitle><jtitle>International journal of forecasting</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>25</volume><issue>2</issue><spage>218</spage><epage>238</epage><pages>218-238</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>Recent advances in financial econometrics have led to the development of new estimators of asset price variability using frequently-sampled price data, known as “realised volatility estimators” or simply “realised measures”. These estimators rely on a variety of different assumptions and take many different functional forms. Motivated by the empirical success of combination forecasts, this paper presents a novel approach for combining individual realised measures to form new estimators of price variability. In an application to high frequency IBM price data over the period 1996–2008, we consider 32 different realised measures from 8 distinct classes of estimators. We find that a simple equally-weighted average of these estimators cannot generally be out-performed, in terms of accuracy, by any individual estimator. Moreover, we find that none of the individual estimators encompasses the information in all other estimators, providing further support for the use of combination realised measures.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijforecast.2009.01.011</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2070 |
ispartof | International journal of forecasting, 2009-04, Vol.25 (2), p.218-238 |
issn | 0169-2070 1872-8200 |
language | eng |
recordid | cdi_proquest_journals_207372447 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Accuracy Econometrics Estimating techniques Forecast combination Forecast comparison Realised variance Realised variance Volatility forecasting Forecast comparison Forecast combination Securities prices Studies Volatility Volatility forecasting |
title | Optimal combinations of realised volatility estimators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20combinations%20of%20realised%20volatility%20estimators&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Patton,%20Andrew%20J.&rft.date=2009-04-01&rft.volume=25&rft.issue=2&rft.spage=218&rft.epage=238&rft.pages=218-238&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/j.ijforecast.2009.01.011&rft_dat=%3Cproquest_cross%3E1667495701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207372447&rft_id=info:pmid/&rft_els_id=S0169207009000107&rfr_iscdi=true |