Modeling Majorness as a Perceptual Property in Music from Listener Ratings
For the tasks of automatic music emotion recognition, genre recognition, music recommendation it is helpful to be able to extract mode from any section of a musical piece as a perceived amount of major or minor mode (majorness) inside that section, perceived as a whole (one or several melodies and a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aljanaki, Anna Widmer, Gerhard |
description | For the tasks of automatic music emotion recognition, genre recognition, music recommendation it is helpful to be able to extract mode from any section of a musical piece as a perceived amount of major or minor mode (majorness) inside that section, perceived as a whole (one or several melodies and any harmony present). In this paper we take a data-driven approach (modeling directly from data without giving an explicit definition or explicitly programming an algorithm) towards modeling this property. We collect annotations from musicians and show that majorness can be understood by musicians in an intuitive way. We model this property from the data using deep learning. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073641708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073641708</sourcerecordid><originalsourceid>FETCH-proquest_journals_20736417083</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgWLT_MOC6kCZ97UURsVDEfQl1Kik1qTPpwr-3Cz9AuHAW53BXIlJap0mVKbURMfMgpVRFqfJcR-JS-weO1j2hNoMnh8xglkGD1OEUZjNCQ35CCh-wDuqZbQc9-RdcLQd0SHAzYTngnVj3ZmSMf9yK_el4P5yTifx7Rg7t4Gdyi2qVLHWRpaWs9H_VF7D1PJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073641708</pqid></control><display><type>article</type><title>Modeling Majorness as a Perceptual Property in Music from Listener Ratings</title><source>Free E- Journals</source><creator>Aljanaki, Anna ; Widmer, Gerhard</creator><creatorcontrib>Aljanaki, Anna ; Widmer, Gerhard</creatorcontrib><description>For the tasks of automatic music emotion recognition, genre recognition, music recommendation it is helpful to be able to extract mode from any section of a musical piece as a perceived amount of major or minor mode (majorness) inside that section, perceived as a whole (one or several melodies and any harmony present). In this paper we take a data-driven approach (modeling directly from data without giving an explicit definition or explicitly programming an algorithm) towards modeling this property. We collect annotations from musicians and show that majorness can be understood by musicians in an intuitive way. We model this property from the data using deep learning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Emotion recognition ; Machine learning ; Modelling ; Music ; Musicians & conductors</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Aljanaki, Anna</creatorcontrib><creatorcontrib>Widmer, Gerhard</creatorcontrib><title>Modeling Majorness as a Perceptual Property in Music from Listener Ratings</title><title>arXiv.org</title><description>For the tasks of automatic music emotion recognition, genre recognition, music recommendation it is helpful to be able to extract mode from any section of a musical piece as a perceived amount of major or minor mode (majorness) inside that section, perceived as a whole (one or several melodies and any harmony present). In this paper we take a data-driven approach (modeling directly from data without giving an explicit definition or explicitly programming an algorithm) towards modeling this property. We collect annotations from musicians and show that majorness can be understood by musicians in an intuitive way. We model this property from the data using deep learning.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Emotion recognition</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Music</subject><subject>Musicians & conductors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAQRYMgWLT_MOC6kCZ97UURsVDEfQl1Kik1qTPpwr-3Cz9AuHAW53BXIlJap0mVKbURMfMgpVRFqfJcR-JS-weO1j2hNoMnh8xglkGD1OEUZjNCQ35CCh-wDuqZbQc9-RdcLQd0SHAzYTngnVj3ZmSMf9yK_el4P5yTifx7Rg7t4Gdyi2qVLHWRpaWs9H_VF7D1PJU</recordid><startdate>20180627</startdate><enddate>20180627</enddate><creator>Aljanaki, Anna</creator><creator>Widmer, Gerhard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180627</creationdate><title>Modeling Majorness as a Perceptual Property in Music from Listener Ratings</title><author>Aljanaki, Anna ; Widmer, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20736417083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Emotion recognition</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Music</topic><topic>Musicians & conductors</topic><toplevel>online_resources</toplevel><creatorcontrib>Aljanaki, Anna</creatorcontrib><creatorcontrib>Widmer, Gerhard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aljanaki, Anna</au><au>Widmer, Gerhard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modeling Majorness as a Perceptual Property in Music from Listener Ratings</atitle><jtitle>arXiv.org</jtitle><date>2018-06-27</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>For the tasks of automatic music emotion recognition, genre recognition, music recommendation it is helpful to be able to extract mode from any section of a musical piece as a perceived amount of major or minor mode (majorness) inside that section, perceived as a whole (one or several melodies and any harmony present). In this paper we take a data-driven approach (modeling directly from data without giving an explicit definition or explicitly programming an algorithm) towards modeling this property. We collect annotations from musicians and show that majorness can be understood by musicians in an intuitive way. We model this property from the data using deep learning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073641708 |
source | Free E- Journals |
subjects | Algorithms Annotations Emotion recognition Machine learning Modelling Music Musicians & conductors |
title | Modeling Majorness as a Perceptual Property in Music from Listener Ratings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modeling%20Majorness%20as%20a%20Perceptual%20Property%20in%20Music%20from%20Listener%20Ratings&rft.jtitle=arXiv.org&rft.au=Aljanaki,%20Anna&rft.date=2018-06-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073641708%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073641708&rft_id=info:pmid/&rfr_iscdi=true |