Storage Scheduling with Stochastic Uncertainties: Feasibility and Cost of Imbalances
Dispatchability of renewable energy sources and inflexible loads can be achieved using a volatility-compensating energy storage. However, as the future power outputs of the inflexible devices are uncertain, the computation of a dispatch schedule for such aggregated systems is non-trivial. In the pre...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Appino, R R González Ordiano, J Á Mikut, R Hagenmeyer, V Faulwasser, T |
description | Dispatchability of renewable energy sources and inflexible loads can be achieved using a volatility-compensating energy storage. However, as the future power outputs of the inflexible devices are uncertain, the computation of a dispatch schedule for such aggregated systems is non-trivial. In the present paper, we propose a novel scheduling method that enforces the feasibility of the dispatch schedule with a pre-determined probability based on a description of the operation of the system as a two-stage decision process. Thereby, a crucial point is the use of probabilistic forecasts, in terms of cumulative density function, of the inflexible energy consumption/production profile. Then, for the sake of comparison, we introduce a second scheduling method based on state-of-the-art scenario optimization, where, unlike the proposed method, the focus is on the minimization of the expected final cost. We draw upon simulations based on real consumption and production data to compare the methods and illustrate our findings. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073609424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073609424</sourcerecordid><originalsourceid>FETCH-proquest_journals_20736094243</originalsourceid><addsrcrecordid>eNqNit0KgjAYQEcQJOU7fNC1sDZ_qltJ6lq7ljmnTtZWfpPo7fOiB-jqwDlnRQLG-SE6xoxtSIg4UkpZmrEk4QGpSu8m0Sso5aDa2Wjbw1v7ARYvB4FeS7hbqSYvtPVa4RkKJVA32mj_AWFbyB16cB3cHo0wYnlxR9adMKjCH7dkX1yq_Bo9J_eaFfp6dPNkl1QzmvGUnmIW8_-uL5rjQIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073609424</pqid></control><display><type>article</type><title>Storage Scheduling with Stochastic Uncertainties: Feasibility and Cost of Imbalances</title><source>Free E- Journals</source><creator>Appino, R R ; González Ordiano, J Á ; Mikut, R ; Hagenmeyer, V ; Faulwasser, T</creator><creatorcontrib>Appino, R R ; González Ordiano, J Á ; Mikut, R ; Hagenmeyer, V ; Faulwasser, T</creatorcontrib><description>Dispatchability of renewable energy sources and inflexible loads can be achieved using a volatility-compensating energy storage. However, as the future power outputs of the inflexible devices are uncertain, the computation of a dispatch schedule for such aggregated systems is non-trivial. In the present paper, we propose a novel scheduling method that enforces the feasibility of the dispatch schedule with a pre-determined probability based on a description of the operation of the system as a two-stage decision process. Thereby, a crucial point is the use of probabilistic forecasts, in terms of cumulative density function, of the inflexible energy consumption/production profile. Then, for the sake of comparison, we introduce a second scheduling method based on state-of-the-art scenario optimization, where, unlike the proposed method, the focus is on the minimization of the expected final cost. We draw upon simulations based on real consumption and production data to compare the methods and illustrate our findings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Energy consumption ; Energy storage ; Feasibility ; Optimization ; Renewable energy sources ; Schedules ; Scheduling ; Statistical analysis ; Volatility</subject><ispartof>arXiv.org, 2018-05</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Appino, R R</creatorcontrib><creatorcontrib>González Ordiano, J Á</creatorcontrib><creatorcontrib>Mikut, R</creatorcontrib><creatorcontrib>Hagenmeyer, V</creatorcontrib><creatorcontrib>Faulwasser, T</creatorcontrib><title>Storage Scheduling with Stochastic Uncertainties: Feasibility and Cost of Imbalances</title><title>arXiv.org</title><description>Dispatchability of renewable energy sources and inflexible loads can be achieved using a volatility-compensating energy storage. However, as the future power outputs of the inflexible devices are uncertain, the computation of a dispatch schedule for such aggregated systems is non-trivial. In the present paper, we propose a novel scheduling method that enforces the feasibility of the dispatch schedule with a pre-determined probability based on a description of the operation of the system as a two-stage decision process. Thereby, a crucial point is the use of probabilistic forecasts, in terms of cumulative density function, of the inflexible energy consumption/production profile. Then, for the sake of comparison, we introduce a second scheduling method based on state-of-the-art scenario optimization, where, unlike the proposed method, the focus is on the minimization of the expected final cost. We draw upon simulations based on real consumption and production data to compare the methods and illustrate our findings.</description><subject>Computer simulation</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Feasibility</subject><subject>Optimization</subject><subject>Renewable energy sources</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Statistical analysis</subject><subject>Volatility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNit0KgjAYQEcQJOU7fNC1sDZ_qltJ6lq7ljmnTtZWfpPo7fOiB-jqwDlnRQLG-SE6xoxtSIg4UkpZmrEk4QGpSu8m0Sso5aDa2Wjbw1v7ARYvB4FeS7hbqSYvtPVa4RkKJVA32mj_AWFbyB16cB3cHo0wYnlxR9adMKjCH7dkX1yq_Bo9J_eaFfp6dPNkl1QzmvGUnmIW8_-uL5rjQIw</recordid><startdate>20180524</startdate><enddate>20180524</enddate><creator>Appino, R R</creator><creator>González Ordiano, J Á</creator><creator>Mikut, R</creator><creator>Hagenmeyer, V</creator><creator>Faulwasser, T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180524</creationdate><title>Storage Scheduling with Stochastic Uncertainties: Feasibility and Cost of Imbalances</title><author>Appino, R R ; González Ordiano, J Á ; Mikut, R ; Hagenmeyer, V ; Faulwasser, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20736094243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Feasibility</topic><topic>Optimization</topic><topic>Renewable energy sources</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Statistical analysis</topic><topic>Volatility</topic><toplevel>online_resources</toplevel><creatorcontrib>Appino, R R</creatorcontrib><creatorcontrib>González Ordiano, J Á</creatorcontrib><creatorcontrib>Mikut, R</creatorcontrib><creatorcontrib>Hagenmeyer, V</creatorcontrib><creatorcontrib>Faulwasser, T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appino, R R</au><au>González Ordiano, J Á</au><au>Mikut, R</au><au>Hagenmeyer, V</au><au>Faulwasser, T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Storage Scheduling with Stochastic Uncertainties: Feasibility and Cost of Imbalances</atitle><jtitle>arXiv.org</jtitle><date>2018-05-24</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Dispatchability of renewable energy sources and inflexible loads can be achieved using a volatility-compensating energy storage. However, as the future power outputs of the inflexible devices are uncertain, the computation of a dispatch schedule for such aggregated systems is non-trivial. In the present paper, we propose a novel scheduling method that enforces the feasibility of the dispatch schedule with a pre-determined probability based on a description of the operation of the system as a two-stage decision process. Thereby, a crucial point is the use of probabilistic forecasts, in terms of cumulative density function, of the inflexible energy consumption/production profile. Then, for the sake of comparison, we introduce a second scheduling method based on state-of-the-art scenario optimization, where, unlike the proposed method, the focus is on the minimization of the expected final cost. We draw upon simulations based on real consumption and production data to compare the methods and illustrate our findings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073609424 |
source | Free E- Journals |
subjects | Computer simulation Energy consumption Energy storage Feasibility Optimization Renewable energy sources Schedules Scheduling Statistical analysis Volatility |
title | Storage Scheduling with Stochastic Uncertainties: Feasibility and Cost of Imbalances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Storage%20Scheduling%20with%20Stochastic%20Uncertainties:%20Feasibility%20and%20Cost%20of%20Imbalances&rft.jtitle=arXiv.org&rft.au=Appino,%20R%20R&rft.date=2018-05-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073609424%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073609424&rft_id=info:pmid/&rfr_iscdi=true |