Crowd-Labeling Fashion Reviews with Quality Control

We present a new methodology for high-quality labeling in the fashion domain with crowd workers instead of experts. We focus on the Aspect-Based Sentiment Analysis task. Our methods filter out inaccurate input from crowd workers but we preserve different worker labeling to capture the inherent high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
Hauptverfasser: Chernushenko, Iurii, Gers, Felix A, Löser, Alexander, Checco, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chernushenko, Iurii
Gers, Felix A
Löser, Alexander
Checco, Alessandro
description We present a new methodology for high-quality labeling in the fashion domain with crowd workers instead of experts. We focus on the Aspect-Based Sentiment Analysis task. Our methods filter out inaccurate input from crowd workers but we preserve different worker labeling to capture the inherent high variability of the opinions. We demonstrate the quality of labeled data based on Facebook's FastText framework as a baseline.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073608727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073608727</sourcerecordid><originalsourceid>FETCH-proquest_journals_20736087273</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdi7KL0_R9UlMSs3JzEtXcEsszsjMz1MISi3LTC0vVijPLMlQCCxNzMksqVRwzs8rKcrP4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc2MzAwtzI3Nj4lQBAAxkNCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073608727</pqid></control><display><type>article</type><title>Crowd-Labeling Fashion Reviews with Quality Control</title><source>Freely Accessible Journals</source><creator>Chernushenko, Iurii ; Gers, Felix A ; Löser, Alexander ; Checco, Alessandro</creator><creatorcontrib>Chernushenko, Iurii ; Gers, Felix A ; Löser, Alexander ; Checco, Alessandro</creatorcontrib><description>We present a new methodology for high-quality labeling in the fashion domain with crowd workers instead of experts. We focus on the Aspect-Based Sentiment Analysis task. Our methods filter out inaccurate input from crowd workers but we preserve different worker labeling to capture the inherent high variability of the opinions. We demonstrate the quality of labeled data based on Facebook's FastText framework as a baseline.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data mining ; Labeling ; Quality control ; Sentiment analysis</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Chernushenko, Iurii</creatorcontrib><creatorcontrib>Gers, Felix A</creatorcontrib><creatorcontrib>Löser, Alexander</creatorcontrib><creatorcontrib>Checco, Alessandro</creatorcontrib><title>Crowd-Labeling Fashion Reviews with Quality Control</title><title>arXiv.org</title><description>We present a new methodology for high-quality labeling in the fashion domain with crowd workers instead of experts. We focus on the Aspect-Based Sentiment Analysis task. Our methods filter out inaccurate input from crowd workers but we preserve different worker labeling to capture the inherent high variability of the opinions. We demonstrate the quality of labeled data based on Facebook's FastText framework as a baseline.</description><subject>Data mining</subject><subject>Labeling</subject><subject>Quality control</subject><subject>Sentiment analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdi7KL0_R9UlMSs3JzEtXcEsszsjMz1MISi3LTC0vVijPLMlQCCxNzMksqVRwzs8rKcrP4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc2MzAwtzI3Nj4lQBAAxkNCk</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Chernushenko, Iurii</creator><creator>Gers, Felix A</creator><creator>Löser, Alexander</creator><creator>Checco, Alessandro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180405</creationdate><title>Crowd-Labeling Fashion Reviews with Quality Control</title><author>Chernushenko, Iurii ; Gers, Felix A ; Löser, Alexander ; Checco, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20736087273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data mining</topic><topic>Labeling</topic><topic>Quality control</topic><topic>Sentiment analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chernushenko, Iurii</creatorcontrib><creatorcontrib>Gers, Felix A</creatorcontrib><creatorcontrib>Löser, Alexander</creatorcontrib><creatorcontrib>Checco, Alessandro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernushenko, Iurii</au><au>Gers, Felix A</au><au>Löser, Alexander</au><au>Checco, Alessandro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Crowd-Labeling Fashion Reviews with Quality Control</atitle><jtitle>arXiv.org</jtitle><date>2018-04-05</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We present a new methodology for high-quality labeling in the fashion domain with crowd workers instead of experts. We focus on the Aspect-Based Sentiment Analysis task. Our methods filter out inaccurate input from crowd workers but we preserve different worker labeling to capture the inherent high variability of the opinions. We demonstrate the quality of labeled data based on Facebook's FastText framework as a baseline.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073608727
source Freely Accessible Journals
subjects Data mining
Labeling
Quality control
Sentiment analysis
title Crowd-Labeling Fashion Reviews with Quality Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T07%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Crowd-Labeling%20Fashion%20Reviews%20with%20Quality%20Control&rft.jtitle=arXiv.org&rft.au=Chernushenko,%20Iurii&rft.date=2018-04-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073608727%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073608727&rft_id=info:pmid/&rfr_iscdi=true