LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos
Neuronal assemblies, loosely defined as subsets of neurons with reoccurring spatio-temporally coordinated activation patterns, or "motifs", are thought to be building blocks of neural representations and information processing. We here propose LeMoNADe, a new exploratory data analysis meth...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-02 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kirschbaum, Elke Haußmann, Manuel Wolf, Steffen Sonntag, Hannah Schneider, Justus Elzoheiry, Shehabeldin Kann, Oliver Durstewitz, Daniel Hamprecht, Fred A |
description | Neuronal assemblies, loosely defined as subsets of neurons with reoccurring spatio-temporally coordinated activation patterns, or "motifs", are thought to be building blocks of neural representations and information processing. We here propose LeMoNADe, a new exploratory data analysis method that facilitates hunting for motifs in calcium imaging videos, the dominant microscopic functional imaging modality in neurophysiology. Our nonparametric method extracts motifs directly from videos, bypassing the difficult intermediate step of spike extraction. Our technique augments variational autoencoders with a discrete stochastic node, and we show in detail how a differentiable reparametrization and relaxation can be used. An evaluation on simulated data, with available ground truth, reveals excellent quantitative performance. In real video data acquired from brain slices, with no ground truth available, LeMoNADe uncovers nontrivial candidate motifs that can help generate hypotheses for more focused biological investigations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073560985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073560985</sourcerecordid><originalsourceid>FETCH-proquest_journals_20735609853</originalsourceid><addsrcrecordid>eNqNzEELgjAYgOERBEn5Hz7oLKytqXWTLDpoEHSXpZ8ymVttGvTv69AP6PReHt4ZCRjnmyjdMrYgofc9pZTFCROCB-RaYGkvWY57KFA6gw2UdlQtSNPABSdnjdSQeY_DXb8hxxHrUVkDykAtda2mAdQgO2U6eKkGrV-ReSu1x_DXJVmfjrfDOXo4-5zQj1VvJ_e9-orRhIuY7lLB_1MfELU-eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073560985</pqid></control><display><type>article</type><title>LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos</title><source>Free E- Journals</source><creator>Kirschbaum, Elke ; Haußmann, Manuel ; Wolf, Steffen ; Sonntag, Hannah ; Schneider, Justus ; Elzoheiry, Shehabeldin ; Kann, Oliver ; Durstewitz, Daniel ; Hamprecht, Fred A</creator><creatorcontrib>Kirschbaum, Elke ; Haußmann, Manuel ; Wolf, Steffen ; Sonntag, Hannah ; Schneider, Justus ; Elzoheiry, Shehabeldin ; Kann, Oliver ; Durstewitz, Daniel ; Hamprecht, Fred A</creatorcontrib><description>Neuronal assemblies, loosely defined as subsets of neurons with reoccurring spatio-temporally coordinated activation patterns, or "motifs", are thought to be building blocks of neural representations and information processing. We here propose LeMoNADe, a new exploratory data analysis method that facilitates hunting for motifs in calcium imaging videos, the dominant microscopic functional imaging modality in neurophysiology. Our nonparametric method extracts motifs directly from videos, bypassing the difficult intermediate step of spike extraction. Our technique augments variational autoencoders with a discrete stochastic node, and we show in detail how a differentiable reparametrization and relaxation can be used. An evaluation on simulated data, with available ground truth, reveals excellent quantitative performance. In real video data acquired from brain slices, with no ground truth available, LeMoNADe uncovers nontrivial candidate motifs that can help generate hypotheses for more focused biological investigations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brain ; Calcium ; Data acquisition ; Data analysis ; Data processing ; Ground truth ; Hunting ; Imaging ; Neurophysiology ; Video data</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kirschbaum, Elke</creatorcontrib><creatorcontrib>Haußmann, Manuel</creatorcontrib><creatorcontrib>Wolf, Steffen</creatorcontrib><creatorcontrib>Sonntag, Hannah</creatorcontrib><creatorcontrib>Schneider, Justus</creatorcontrib><creatorcontrib>Elzoheiry, Shehabeldin</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><creatorcontrib>Durstewitz, Daniel</creatorcontrib><creatorcontrib>Hamprecht, Fred A</creatorcontrib><title>LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos</title><title>arXiv.org</title><description>Neuronal assemblies, loosely defined as subsets of neurons with reoccurring spatio-temporally coordinated activation patterns, or "motifs", are thought to be building blocks of neural representations and information processing. We here propose LeMoNADe, a new exploratory data analysis method that facilitates hunting for motifs in calcium imaging videos, the dominant microscopic functional imaging modality in neurophysiology. Our nonparametric method extracts motifs directly from videos, bypassing the difficult intermediate step of spike extraction. Our technique augments variational autoencoders with a discrete stochastic node, and we show in detail how a differentiable reparametrization and relaxation can be used. An evaluation on simulated data, with available ground truth, reveals excellent quantitative performance. In real video data acquired from brain slices, with no ground truth available, LeMoNADe uncovers nontrivial candidate motifs that can help generate hypotheses for more focused biological investigations.</description><subject>Brain</subject><subject>Calcium</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Ground truth</subject><subject>Hunting</subject><subject>Imaging</subject><subject>Neurophysiology</subject><subject>Video data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzEELgjAYgOERBEn5Hz7oLKytqXWTLDpoEHSXpZ8ymVttGvTv69AP6PReHt4ZCRjnmyjdMrYgofc9pZTFCROCB-RaYGkvWY57KFA6gw2UdlQtSNPABSdnjdSQeY_DXb8hxxHrUVkDykAtda2mAdQgO2U6eKkGrV-ReSu1x_DXJVmfjrfDOXo4-5zQj1VvJ_e9-orRhIuY7lLB_1MfELU-eg</recordid><startdate>20190222</startdate><enddate>20190222</enddate><creator>Kirschbaum, Elke</creator><creator>Haußmann, Manuel</creator><creator>Wolf, Steffen</creator><creator>Sonntag, Hannah</creator><creator>Schneider, Justus</creator><creator>Elzoheiry, Shehabeldin</creator><creator>Kann, Oliver</creator><creator>Durstewitz, Daniel</creator><creator>Hamprecht, Fred A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190222</creationdate><title>LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos</title><author>Kirschbaum, Elke ; Haußmann, Manuel ; Wolf, Steffen ; Sonntag, Hannah ; Schneider, Justus ; Elzoheiry, Shehabeldin ; Kann, Oliver ; Durstewitz, Daniel ; Hamprecht, Fred A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20735609853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brain</topic><topic>Calcium</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Ground truth</topic><topic>Hunting</topic><topic>Imaging</topic><topic>Neurophysiology</topic><topic>Video data</topic><toplevel>online_resources</toplevel><creatorcontrib>Kirschbaum, Elke</creatorcontrib><creatorcontrib>Haußmann, Manuel</creatorcontrib><creatorcontrib>Wolf, Steffen</creatorcontrib><creatorcontrib>Sonntag, Hannah</creatorcontrib><creatorcontrib>Schneider, Justus</creatorcontrib><creatorcontrib>Elzoheiry, Shehabeldin</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><creatorcontrib>Durstewitz, Daniel</creatorcontrib><creatorcontrib>Hamprecht, Fred A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirschbaum, Elke</au><au>Haußmann, Manuel</au><au>Wolf, Steffen</au><au>Sonntag, Hannah</au><au>Schneider, Justus</au><au>Elzoheiry, Shehabeldin</au><au>Kann, Oliver</au><au>Durstewitz, Daniel</au><au>Hamprecht, Fred A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos</atitle><jtitle>arXiv.org</jtitle><date>2019-02-22</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Neuronal assemblies, loosely defined as subsets of neurons with reoccurring spatio-temporally coordinated activation patterns, or "motifs", are thought to be building blocks of neural representations and information processing. We here propose LeMoNADe, a new exploratory data analysis method that facilitates hunting for motifs in calcium imaging videos, the dominant microscopic functional imaging modality in neurophysiology. Our nonparametric method extracts motifs directly from videos, bypassing the difficult intermediate step of spike extraction. Our technique augments variational autoencoders with a discrete stochastic node, and we show in detail how a differentiable reparametrization and relaxation can be used. An evaluation on simulated data, with available ground truth, reveals excellent quantitative performance. In real video data acquired from brain slices, with no ground truth available, LeMoNADe uncovers nontrivial candidate motifs that can help generate hypotheses for more focused biological investigations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073560985 |
source | Free E- Journals |
subjects | Brain Calcium Data acquisition Data analysis Data processing Ground truth Hunting Imaging Neurophysiology Video data |
title | LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=LeMoNADe:%20Learned%20Motif%20and%20Neuronal%20Assembly%20Detection%20in%20calcium%20imaging%20videos&rft.jtitle=arXiv.org&rft.au=Kirschbaum,%20Elke&rft.date=2019-02-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073560985%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073560985&rft_id=info:pmid/&rfr_iscdi=true |